

hybrid-VPP4DSO: Stakeholder Workshop

Economic appraisal of selected VPP Use Cases: 1. Market-, 2. Network access-, 3. DSO-driven

(preliminary results for discussion)

Christoph Gutschi (Cybergrid)

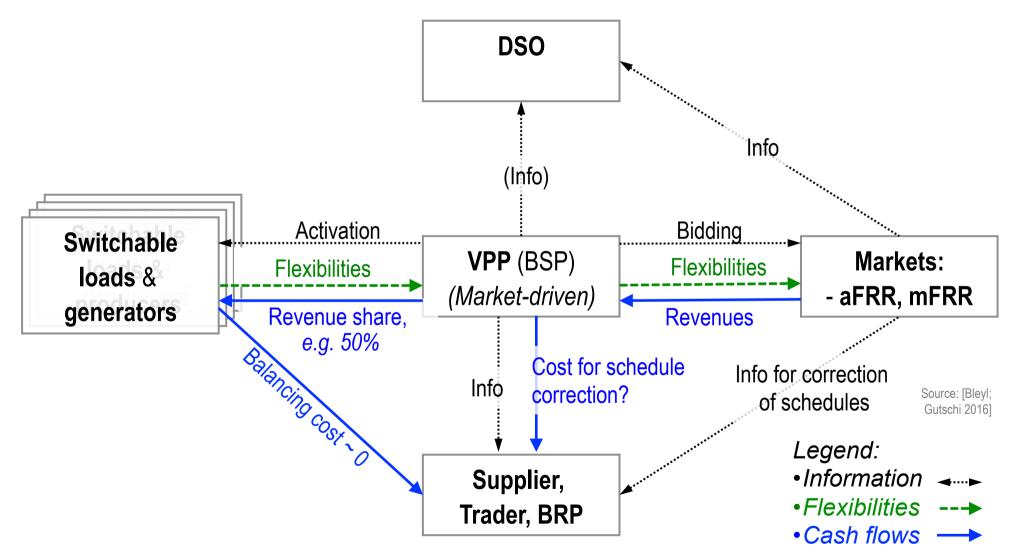
Jan W. Bleyl (Energetic Solutions)

Vienna, 14. December 2016

Outline

- 1. Market-driven VPP (with and without DSO restrictions)
 - a. Stakeholders; Information-, Flexibilities- and Cash flows
 - b. Input data: CAPEX and OPEX
 - c. Break-even analyses incl. sensitivities
- 2. Client network access-driven VPP (for generators and consumers)
 - a. Multi-stakeholder cost-benefit analyses (qualitative)

3. DSO-driven VPP:


- a. Use cases: 1. Avoided network construction and 2. Maintenance
- b. Stakeholder and cost-benefit perspectives

4. Outlook:

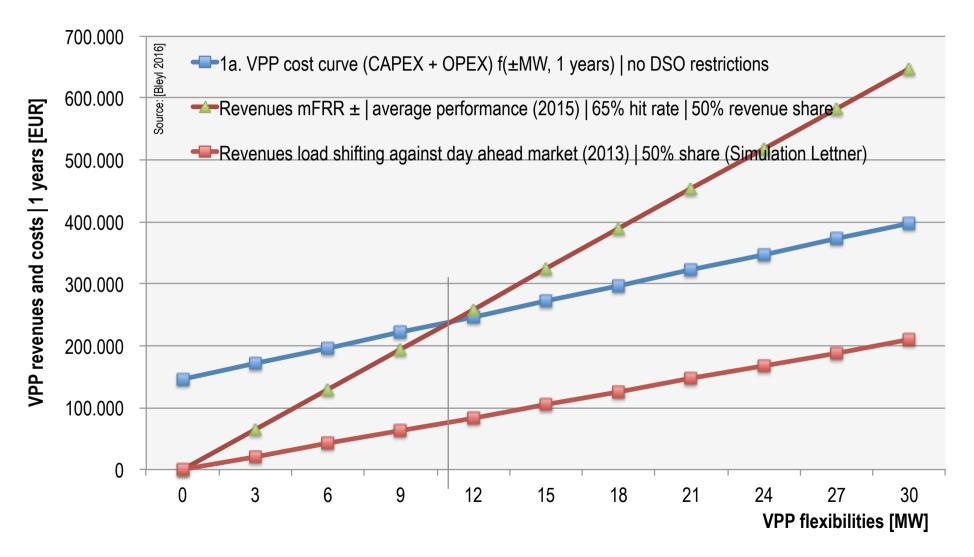
- a. hybrid-VPP: Use case mix?
- b. Dynamic investment calculation for hybrid-VPP

Case 1a.: VPP for Flexibility Markets without restrictions from network operation

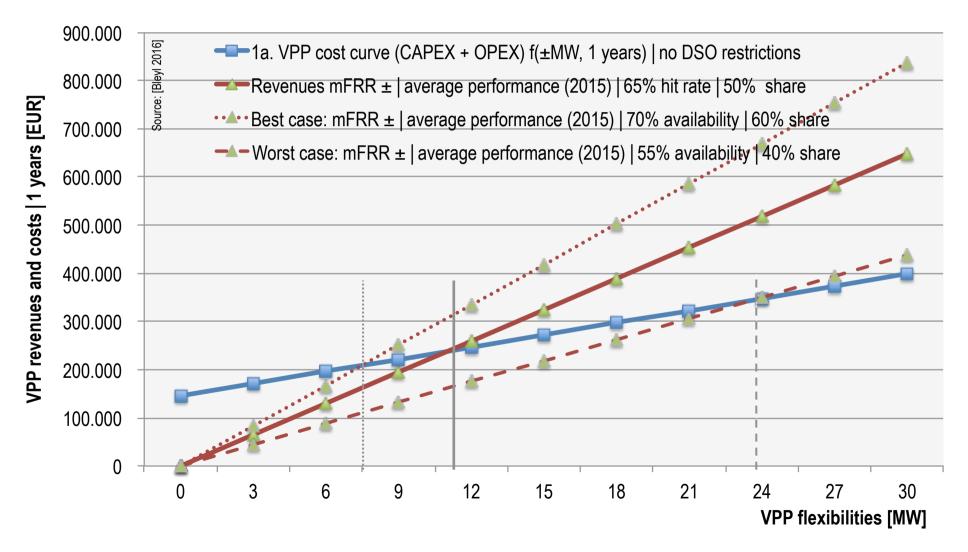
1a. VPP for Flexibility Markets without restrictions from network operation

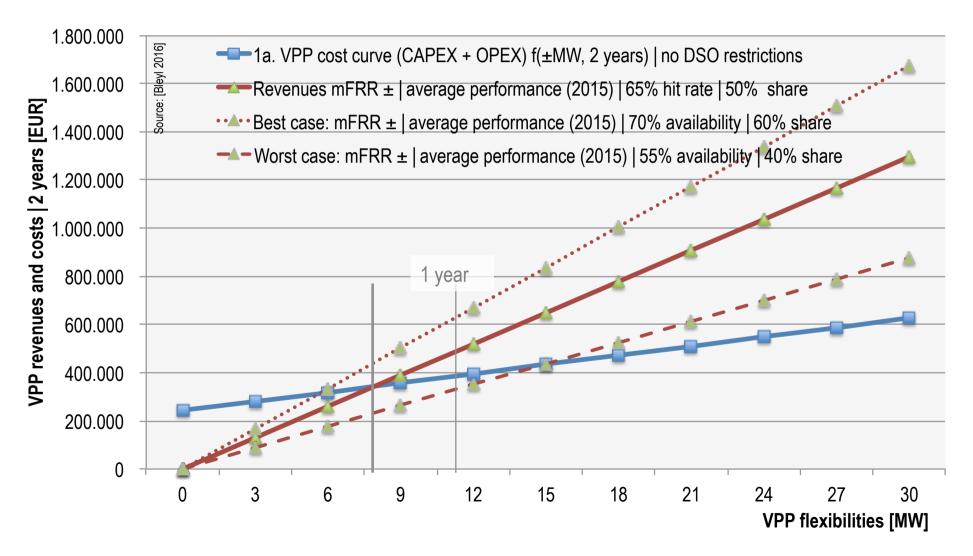
1a. CAPEX: a) Fix, b) Variable per MW

	unit	cost	Explanations and remarks
a) CAPEX (per VPP system <100 MW):	[EUR]	50.000	
VPP System	[EUR]	50.000	VPP System installation; Pre-qualification APG; TSO connection
Connection to DSO NOC	[EUR]	0	Network operation center connection (manpower + hardware)
Trading floor infrastructure	[EUR]	0	not considered
Trading license	[EUR]	0	Softcost not considered
Balancing group	[EUR]	0	50.000 EUR Security, refundable
b) CAPEX (per flexibility of $\sim \pm 1$ MW):	[EUR/MW]	4.000	
Per flexibility connected	[EUR/MW]	3.000	Technician + hardware at client
Transaction cost VPP client	[EUR/MW]	1.000	Sales, marketing, drawing up of contract

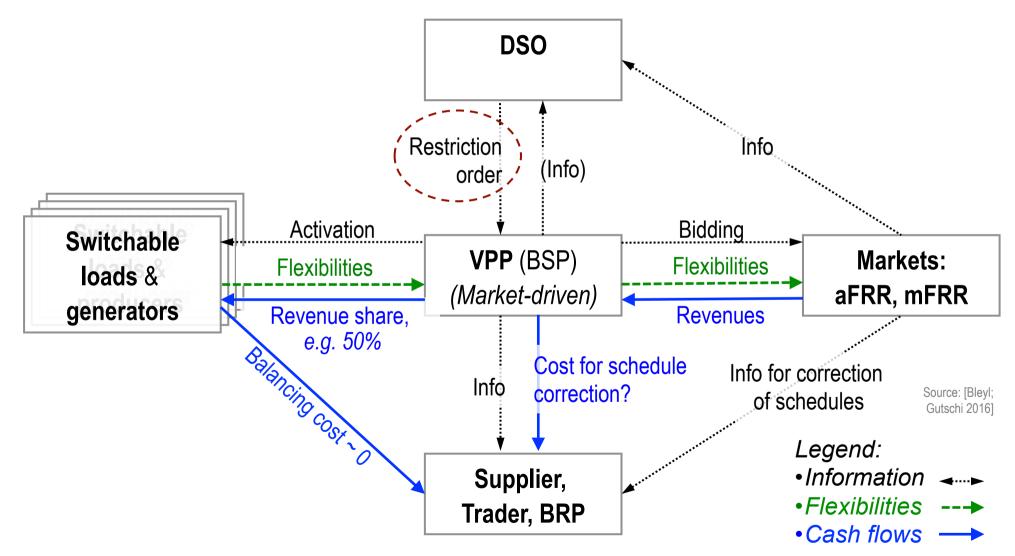

1a. **OPEX**: c) **Fix per year**; d) **Variable per MW**, **year**

	unit	cost	Explanations and remarks
c) OPEX (fix per VPP system per year):	[EUR/a]	96.000	
VPP-IT operating cost	[EUR/a]	30.000	IT-System hosting, maintenance, support
IT-communication TSO	[EUR/a]	6.000	IT-communication with TSO
IT-communication DSO	[EUR/a]		IT-communication with DSO
Personal operating cost			
VPP operation incl. trading	[EUR/a]	60.000	24/7: 0,1 person equivalents/a (876 h/a @ 65 EUR/h;)
d) OPEX (variable per client per year):	[EUR/a]	4.400	
Software licence VPP (per flexibility of \sim	±1MW)	3.500	
TRL only	[EUR/a]	3.500	including day-ahead, intraday
IT-communication clients (per flexibility)	[EUR/a]	900	DSL encrypted
Average 0,5 + 5 MW	[EUR/a]	900	
5 MW	[EUR/a]	1.200	e.g. industrial site (DSL+firewall)
0,5 MW	[EUR/a]	600	e.g. small hydro (mobile connection)


1a. Cost structure = f(MW): Fix + variable; 1 year operation time


1a, c. Break-even analyses Revenues vs. VPP cost; 1 year operation

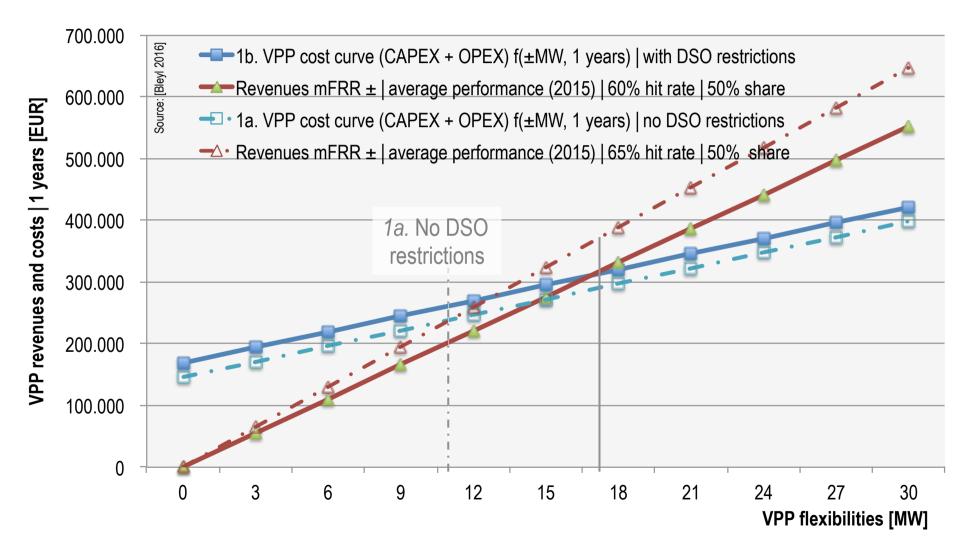
1a. Break-even: Revenue sensitivity Best, worst case; 1 year operation time



1a. Break-even: Project term sensitivity2 years (vs. 1 year) operation time

Case 1b.: VPP for Flexibility Markets with Operating Restrictions from DSO

1b. VPP for Flexibility Markets with restrictions from network operation


1b. CAPEX: a) Fix, b) Variable per MW

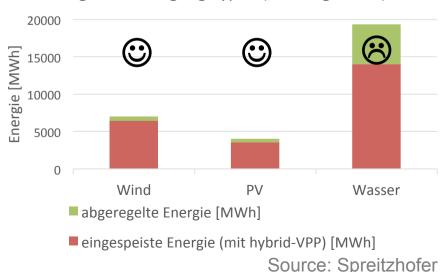
	unit	cost	Explanations and remarks
a) CAPEX (per VPP system <100 MW):	[EUR]	70.000	
VPP System	[EUR]	50.000	VPP System installation; Pre-qualification APG; TSO connection
Connection to DSO NOC	[EUR]	20.000	Network operation center connection (manpower + hardware)
Trading floor infrastructure	[EUR]	Ь 	not considered
Trading license	[EUR]	0	Softcost not considered
Balancing group	[EUR]	0	50.000 EUR Security, refundable
b) CAPEX (per flexibility of $\sim \pm 1$ MW):	[EUR/MW]	4.000	
Per flexibility connected	[EUR/MW]	3.000	Technician + hardware at client
Transaction cost VPP client	[EUR/MW]	1.000	Sales, marketing, drawing up of contract

1b. OPEX:c) Fix per year; d) Variable per MW, year

	unit	cost	Explanations and remarks
c) OPEX (fix per VPP system per year):	[EUR/a]	99.000	
VPP-IT operating cost	[EUR/a]	30.000	IT-System hosting, maintenance, support
IT-communication TSO	[EUR/a]	6 <u>.0</u> 00	IT-communication with TSO
IT-communication DSO	[EUR/a]	3.000	IT-communication with DSO
Personal operating cost			
VPP operation incl. trading	[EUR/a]	60.000	24/7: 0,1 person equivalents/a (876 h/a @ 65 EUR/h;)
d) OPEX (variable per client per year):	[EUR/a]	4.400	
Software licence VPP (per flexibility of \sim	±1MW)	3.500	
TRL only	[EUR/a]	3.500	including day-ahead, intraday
IT-communication clients (per flexibility)	[EUR/a]	900	DSL encrypted
Average 0,5 + 5 MW	[EUR/a]	900	
5 MW	[EUR/a]	1.200	e.g. industrial site (DSL+firewall)
0,5 MW	[EUR/a]	600	e.g. small hydro (mobile connection)

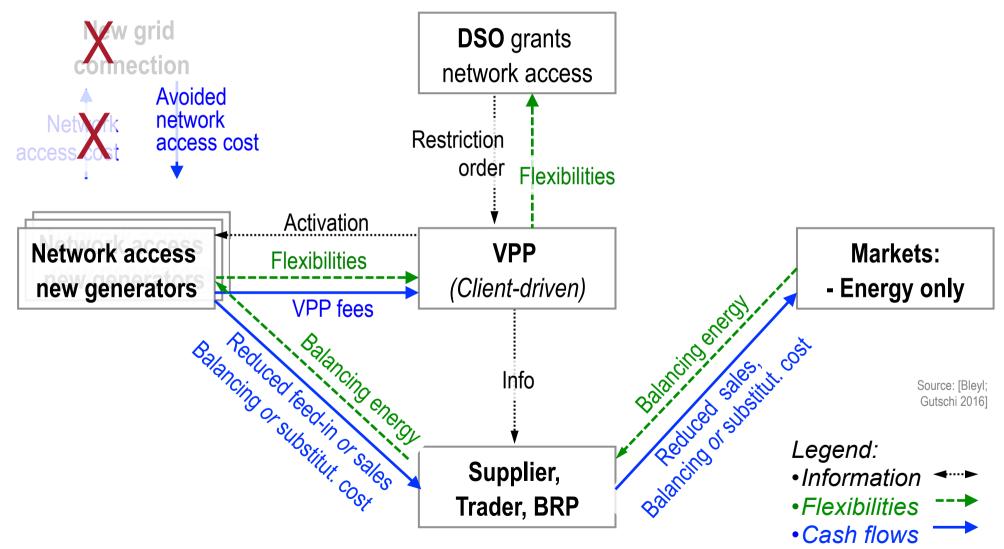
1b. Break-even analyses (+ comparison with 1a.) Revenues vs. VPP cost; 1 year operation

1b. VPP for Flexibility Markets with restrictions from network operation


Advantages	Disadvantages
Flexibilities located in stressed grid sections can be integrated into a pool	Increased costs of VPP per "MW available flexibility"
Even if only temporarily available, such flexibilities can serve as backup to other ressources in the pool	New communication interface between DSO and VPP needed (costs, security issue)
Larger pool size achieveable	Planning of available capacity becomes more complex for the aggregator.
Cooperation between VPP operator and DSO required	Cooperation between VPP operator and DSO required
DSO can get additional information about grid status (from local measurements provided by VPP)	DSO SCADA may need an update to provide the required information to the VPP

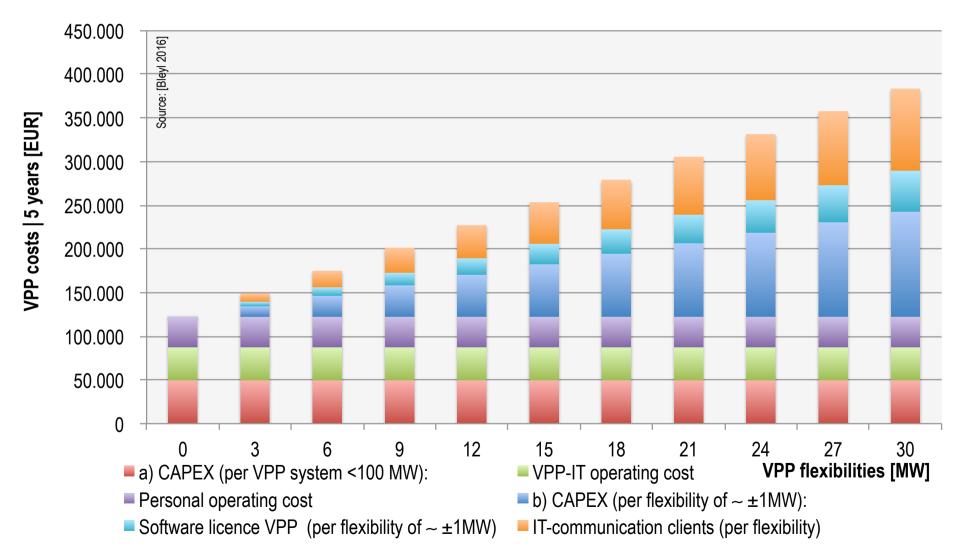
Cases 2.: VPP to minimize grid connection cost for new generators and consumers

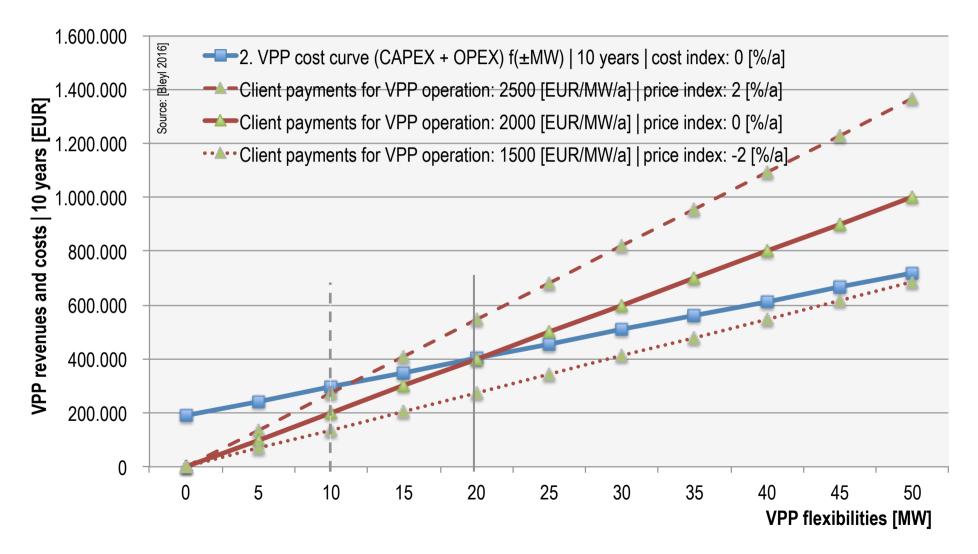
Case 2a: New generator applies for grid access in already stressed grid section


DSO can offer two options:

- Standard approach: customer has to pay for the required grid enhancement
- Innovative approach: customer can connect to the existing infrastructure but agrees to be curtailed in critical hours
 - Local P=f(U) feed-in control is the preferred option but may be problematic in some grid topologies
 - Curtailment via VPP (driven by DSO commands) is a versatile solution
- Generators' perspective: compare costs of grid enhancement vs. value of curtailed energy (lost revenue)

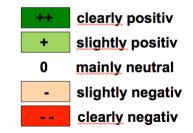
Vergleich Erzeugungstypen (Leistung 4 MW)


2a. VPP to minimize grid connection cost for new generators


2a. VPP to minimize grid connection cost Cost items: Fix & variable per MW, year

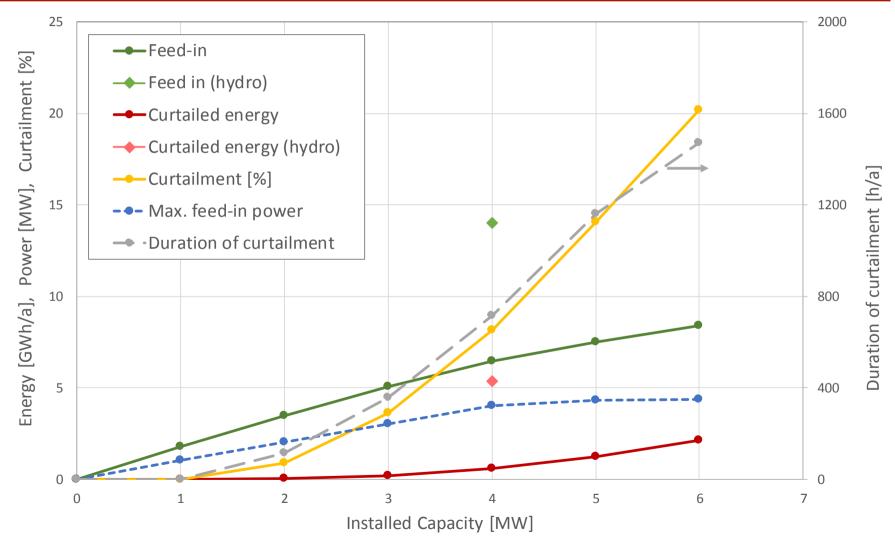
	unit	cost	Explanations and remarks
a) CAPEX (per VPP system <100 MW):	[EUR]	50.000	
VPP System	[EVR]	30.000	VPA System installation (DSO-internal)
Connection to DSO NOC	[EUR]	20.000	Network operation center connection (manpower + hardware)
b) CAPEX (per flexibility of $\sim \pm 1$ MW): [EUR/MW]	4.000	
Per flexibility connected [EUR/MW]	3.000	Technician + hardware at client site
Transaction cost VPP client [EUR/MW]	1.000	Sales, marketing, drawing up of contract
	unit	cost	Explanations and remarks
c) OPEX (fix per VPP system per year):	[EUR/a]	14.000	
VPP-IT operating cost	[EUR/2]	6.000	TT-System hosting, maintenance, support (w/o TSO connection, i
IT-communication TSO	[EUR/a]	0	IT-communication with TSO (not needed)
IT-communication DSO	[EUR/a]	1.200	IT-communication with DSO
Personal operating cost			
VPP surveillance of automatic operation	[EUR/a]	6.800	2h/week \cong 102 h/a @ 65 EUR/h (no trading needed)
d) OPEX (variable per client per year)	[EUR/a]	900	
Software licence VPP (per flexibility of \sim	±1MW)		
DSO only	[EUR/2]	300	support for DSO operation, w/o tertiary market
IT-communication clients (per flexibility)	(DSLencrypted
Average 0,5 + 5 MW	[EUR]a]	600	

2. Cost structure = f(MW): Fix + variable;5 years operation time



2. Break-even: Revenues vs. cost = f(MW; Client payments); 10 years operation time

2a. VPP to minimize grid connection cost Generator: Cost-Benefit (qualitative)

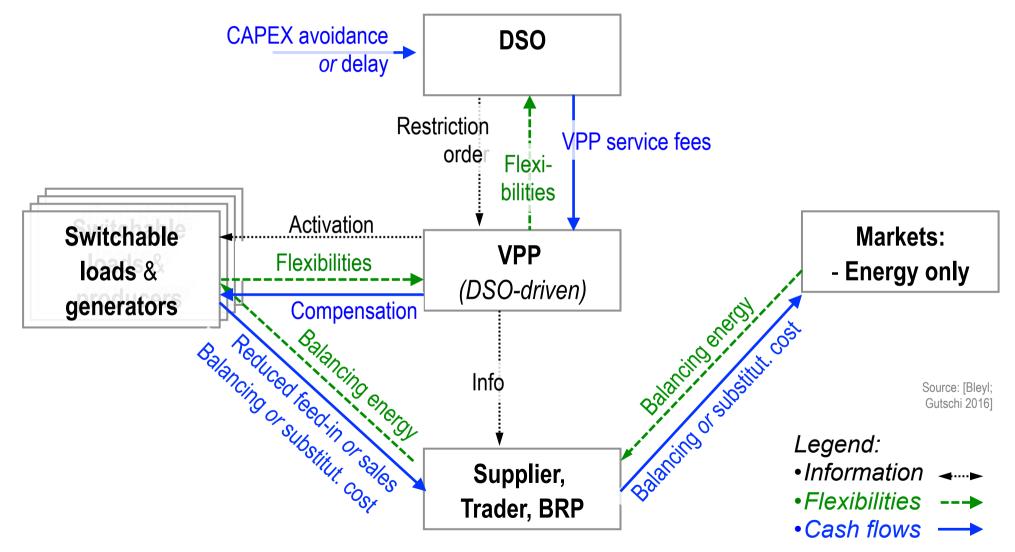

	Generator: New grid connection (Reference)	Generator: Avoided grid connection (w. VPP)
Revenues / Benefits	Additional feed-in revenues	Avoided investment cost
	-	Avoided maintenance cost (?)
Cost	Investment cost	Lost feed-in revenues
	Add. maintenance cost <i>(?)</i>	VPP service cost, Balancing cost
Economic appraisal	high CAPEX long payback	++ avoided CAPEX
Other benefits or risks	+ Improved network access	- Weaker network access

2a. VPP to minimize grid connection cost All stakeholders: Cost-Benefit (qualitative)

	Generator: New grid connection (Reference)	Generator: Avoided grid connection (w. VPP)	hybrid-VPP	DSO	Supplier, Trader, BRP	Markets	Explanations and remarks
Revenues / Benefits	Additional feed-in revenues	Avoided investment cost	Additional income from VPP services	Incentive regulation => higher Rol <i>(?)</i>	Balancing energy	Balancing energy	
	-	Avoided maintenance cost (?)	-	-	-	-	
Cost	Investment cost	Lost feed-in revenues	Operation cost	Communication interface	Balancing energy of balance group	-	
	Add. maintenance cost <i>(?)</i>	VPP service cost, Balancing cost	Communication cost	SCADA update	-	-	
Economic appraisal	high CAPEX long payback	++ avoided CAPEX	0 (?)	0 (?)	0	0 (low impact)	++ clearly positiv + slightly positiv
Other benefits or risks	+ Improved network access	- Weaker network access	+ Access to new flexibilities	+ Add. network operation data + Customer relation	- Minor administrative efforts	- Reduced RES share	0 mainly neutral - slightly negativ - clearly negativ

2a. Case study: Optimized capacity of new wind park in "hydro dominated" grid

Source: Spreitzhofer

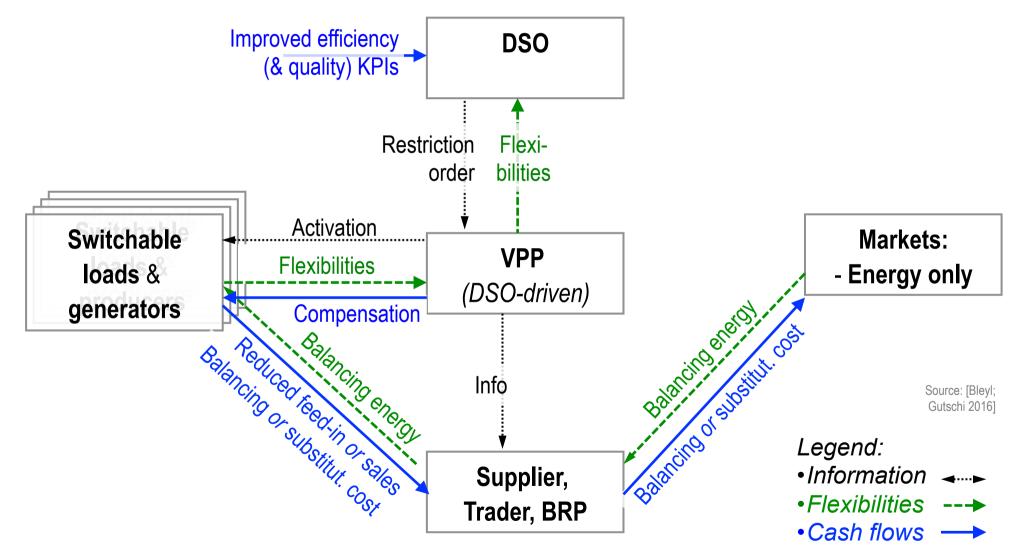

Cases 2b.: VPP to minimize grid connection cost for new consumers

Case 2b: Industrial consumer *applies for grid access in already stressed grid section*

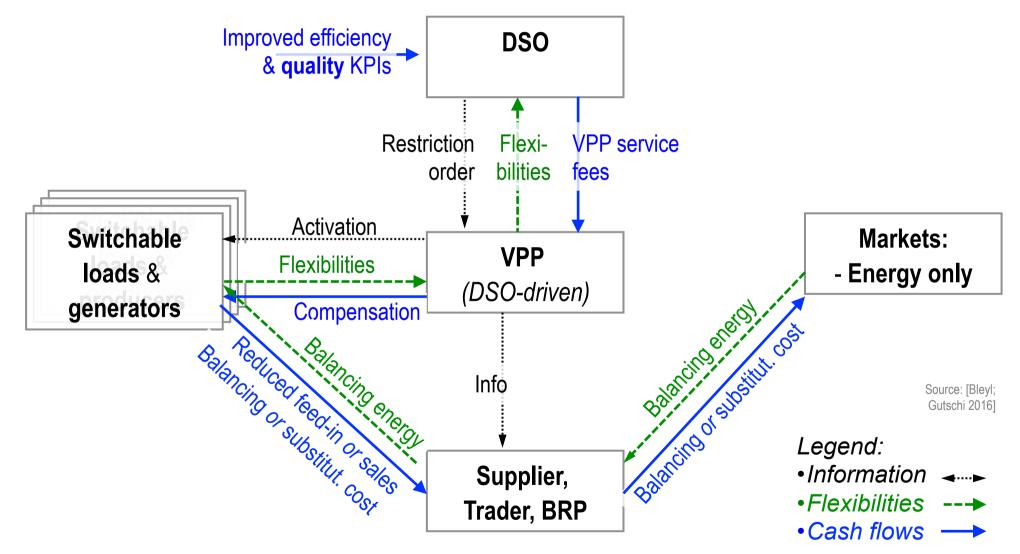
- The DSO can offer same options as for the generator (2a)
 - Payment for grid enhancement
 - Agreement to curtail consumption (or increase internal generation) during critical hours
- Unlike the generators' case this case is rather driven by overload of equipment and simple local control P=f(U) is no option.
- This case cannot be generalized because not only grid topology but also the internal structure of production industry must be taken into account.
 - Load is not curtailed but shifted (e.g. afternoon → night) This may require shift of production cycles and increased labour costs
 - Internal generation of goods storage can eventually provide required flexibility for low costs
 - Opportunity costs mainly depend on type of facility but are likely to be much higher than price of energy (> 500 EUR/MWh)

Cases 3a-c.: **VPP for DSO in Austria**

3a. VPP for optimization of grid investments of DSO

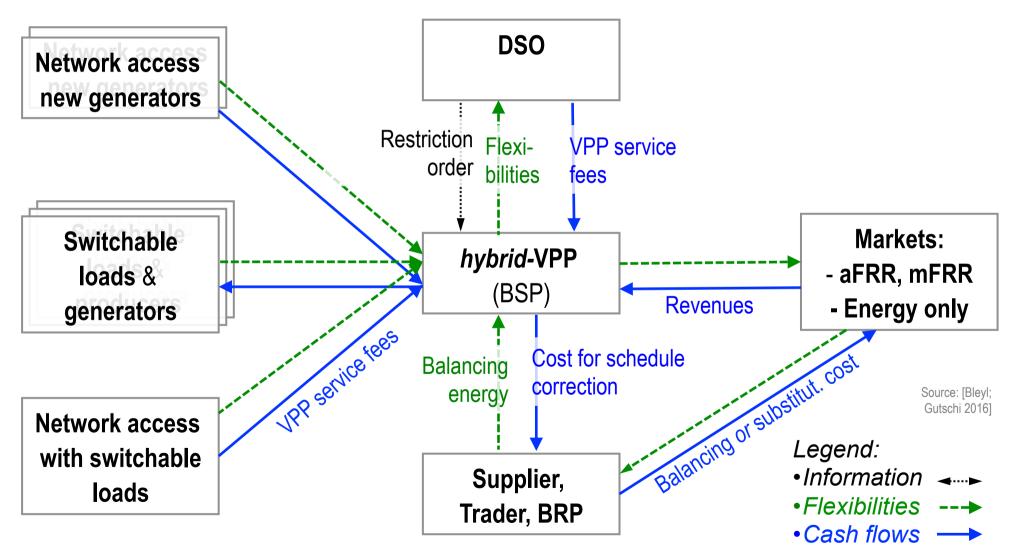


За.


All stakeholders: Cost-Benefit (qualitative)

Revenues / Benefits	Generator or consumer Additional income from VPP	<i>hybrid-</i> VPP Additional income from DSO	DSO Avoided investment (reduced CAPEX)	Supplier, Trader, BRP Balancing energy (from customer)	Markets Balancing energy	Explanations and remarks
		-	-	-	-	
Cost	Balancing cost	Operation cost	VPP service fee (OPEX) <u>(?)</u>	Balancing energy of balance group	-	
		Communication cost	SCADA update, Communication interface	-	-	
Economic appraisal	+ Additional income	+ Minor additional income	To be discussed: efficiency KPIs, ROI	0	0 (low impact)	++ clearly positiv
Other benefits or risks		+ Access to new flexibilities	+ Add. network operation data + Customer relation	- Minor administr. efforts - Forecast more complex		 + slightly positiv 0 mainly neutral - slightly negativ - clearly negativ

3b. VPP to support grid operation during maintenance and special switching states



3c. VPP to support grid operation with quality regulation regime

Ausblick: *hybrid-*VPP = Case 1 + Case 2 + (Case 3)

1.-3. hybrid-VPP: Market-, Network access- & DSO- driven => Mix of use cases

hybrid-VPP4DSO: Stakeholder Workshop

Thank you very much for your attention! Your feedback is appreciated

Christoph Gutschi (Cybergrid)

Jan W. Bleyl (Energetic Solutions)

Vienna, 14. December 2016