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Abstract
The variety of available technology options for the operation of zero-emission bus sys-
tems gives rise to the problem of finding an optimal technology decision for bus opera-
tors. Among others, overnight charging, opportunity charging and hydrogen-based 
technology options are frequently pursued technological solutions. As their operating 
conditions are strongly influenced by the urban context, an optimal technology deci-
sion is far from trivial. In this paper, we propose an Integer Linear Programming (ILP) 
based optimization model that is built upon a broad input database, which allows a cus-
tomized adaption to local circumstances. The ultimate goal is to determine an optimal 
technology decision for each bus line, considering its combined effects on charging and 
vehicle scheduling as well as infrastructural design. To this end, we develop technol-
ogy-specific network representations for five distinct technologies. These networks can 
be viewed individually or as a multi-layered graph, which represents the input for the 
optimal technology mix. The proposed optimization framework is applied to a real-
world instance with more than 4.000 timetabled trips. To study the sensitivity of solu-
tions, parameter changes are tested in a comprehensive scenario design. The subsequent 
analysis produces valuable managerial insights for the bus operator and highlights the 
decisive role of certain planning assumptions. The results of our computations reveal 
that the deployment of a mixed fleet can indeed lead to financial benefits. The compari-
son of single technology system solutions provides a further basis for decision making 
and demonstrates relative superiorities between different technologies.
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1  Introduction

Increasing ambitions to reduce - and ultimately eliminate - emissions in the trans-
port sector have produced a number of different strategies and action plans in recent 
years. A central document, the European Strategy for Low-Emission Mobility, sets 
three goals to reach carbon neutrality by 2050: an increase in the efficiency of trans-
port systems, an acceleration of the deployment of alternative fuels, and a transi-
tion toward zero-emission vehicles (European Commision 2016). These goals imply 
two prospective developments: (1) Public transportation is playing a crucial role in 
future transport solutions. (2) Public transportation is facing a major technological 
transition. Since 2019, the public sector of transportation is explicitly regulated by 
the revised Clean Vehicle Directive (CVD), a legislative act requiring that a spe-
cific share of procured vehicles must comply with the CVD’s definition of clean 
and zero-emission vehicles (European Parliament 2019). Among other technology 
options, electric alternatives have raised particular interest, since they do not pro-
duce particulate emissions and fall into the more confined and sustainable definition 
of zero-emission vehicles.

Urban bus systems provide particularly interesting opportunities for electrifica-
tion: passenger trips take place in a predictable, repetitive manner and are concen-
trated in a small geographic area, where electricity lines are usually found close to 
all bus routes. Moreover, urban congestion and short distances between bus stops 
result in stop-and-go traffic, which is particularly suited for electric propulsion. A 
major drawback, however, are limited driving ranges, as also short round trips accu-
mulate to long driving distances in the course of a day. Therefore, the provision of 
charging and refueling infrastructure and their operational integration into current 
bus services presents a key challenge for bus operators. Within the CVD’s regu-
lated scope of zero-emission vehicles, multiple electric technology concepts exist to 
address this issue. Each of these technology options is based upon a different type 
of vehicle, which is characterized by a distinct type and size of battery or fuel cell.

The first type are pure battery electric buses, which are differentiated by their 
respective charging strategies. Based on the vehicles’ technical configuration, buses 
mainly charge during the night or rely on fast charging at quickly accessible charg-
ing stations during the day. These recharging activities are either scheduled as 
longer, singular events, or on a short, but regular basis, for instance each time when 
a bus reaches a bus line’s terminal station. The latter concept is often referred to as 
opportunity charging, a terminology that we keep using in the course of this paper. 
The second type of zero-emission vehicles are fuel cell buses, which use hydrogen 
as energy source and transform it into electrical energy. As hydrogen tanks are filled 
within relatively short time periods and provide sufficient energy for the routes of 
a whole day, the integration in present bus operations is, from an operational per-
spective, quite simple. The proper design of infrastructure, in contrast, causes major 
problems in the transition process, as delivery and storage of hazardous substances 
are accompanied by many legal and technical constraints.
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Despite electric vehicles’ general benefits concerning carbon emissions, air pollu-
tion, and noise levels, each alternative has distinct infrastructural requirements with 
regard to space, electricity, and storage systems. Moreover, operational factors, such 
as the vehicles’ daily route lengths or dwelling times at bus stops have a significant 
influence on a technology’s applicability. Many of these factors are dictated by the 
urban context and topology of a bus network and determine whether, and to what 
extent, a certain technology can be deployed. Moreover, hydrogen storage as well as 
large-scale charging facilities incur step-wise cost functions with huge cost increases 
when certain thresholds of demand are reached and larger infrastructure dimensions 
are required. For these reasons, a mix of technologies can well represent the most 
cost-efficient solution for a bus network and the optimal technology choice can only 
be derived with an integrated approach, considering local boundary conditions and 
synergies among bus lines.

In the present paper, we address this issue by providing a decision-support tool 
for determining the optimal technology choice for a given bus network from a broad 
set of zero-emission technology options. Specifically, we consider overnight charg-
ing, opportunity charging with supercapacitors or batteries, hydrogen fuelling, and 
overnight charging with hydrogen fuelling for range extension as possible technol-
ogy concepts.

In order to gain structural insights into the decision problem, we conducted 
a thorough problem analysis with all relevant stakeholders of the conversion pro-
ject. Once all major relationships and possible decisions were defined, we devel-
oped mathematical problem formulations that minimize the bus system’s life cycle 
cost for each considered technology. The created Integer Linear Programming (ILP) 
models take strategic decisions by considering operational aspects such as vehicle 
and charging scheduling and are the core of our optimization framework. To derive 
the optimal technology mix, we combined these technology-specific ILP models 
into one large optimization model. Using this optimization framework, we generated 
solutions for each individual technology, as well as solutions for mixed-fleet bus sys-
tems, and analyzed them in a comprehensive scenario design.

Our contribution adds to the existing body of literature by considering a broader 
scope of technology options and a wider range of associated cost factors, thereby 
surpassing previous works (cf. Sect. 2). The incorporation of vehicle and charging 
schedules into our model formulation allows us to study a rarely addressed issue: 
the interdependence of a technology’s vehicle numbers and infrastructural bound-
ary conditions in a mixed-fleet context. The ultimate goal of our contribution is to 
determine the optimal technology mix for emission-free bus networks of medium-
sized cities (in the range of 50.000–500.000 inhabitants). Included in our work is 
an extensive and unique database, which was filled in cooperation with practitioners 
and engineers from the involved transit agency, energy network providers and spe-
cialized consulting and research centers. To the best of our knowledge, such a com-
prehensive collection of cost categories was not used in literature before. Thereby, 
we try to overcome the often remaining gap between academic research and practi-
cal requirements (see Dirks et al. (2021)) and provide practicable solutions for deci-
sion makers.
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In order to account for different technological settings and uncertain economic 
developments, more than a hundred different scenarios were compiled, solved, 
and analyzed in detail. The results of this sensitivity analysis are now being used 
as a basis for decision making and pave the way for an efficient zero-emission bus 
system. Our framework was developed as part of the project move2zero in Graz, 
Austria, which draws up a masterplan for a 100% conversion to zero-emission tech-
nologies by 2030. The huge collection of parameters in our framework allows a cus-
tomized adaptation to local circumstances of other cities.

The rest of this paper is organized as follows. Related literature is reviewed in 
Sect. 2. A description of the studied technology options, the concrete problem dec-
laration and an overview of economic and technical input parameters is given in 
Sect. 3. Section 4 presents the optimization framework, which builds on connection-
based networks to model vehicle schedules. Besides the introduction of the underly-
ing technology-specific graphs, this section includes the mathematical formulation 
of the proposed ILPs. Section 5 is devoted to the results of our real-world applica-
tion case. It includes an analysis of the base-case scenario and an overview of the 
results of our scenario analysis. Final conclusions are drawn in Sect. 6.

2 � Related literature

The provision of public transport services is accompanied by numerous decisions at 
the strategic, tactical, and operational level. Although strategic decisions are often 
dominated by political debates and the evaluation of a few, comparative scenarios, 
the use of mathematical optimization methods has increasingly become an industry-
standard in public transportation planning. Due to its extensive nature, the planning 
process is usually divided into several sub-problems, each solved one after another: 
(1) network design, (2) setting of frequencies, (3) timetabling, (4) vehicle schedul-
ing, (5) crew scheduling and (6) crew rostering. In the following section, we briefly 
discuss sub-problem (4), vehicle scheduling, which is the most relevant aspect for 
our study. A thorough overview of the above-introduced planning problems is pro-
vided in Ibarra-Rojas et al. (2015).

Given a line network and the timetables for one day, planning step (4) is con-
cerned with the optimal deployment of operational resources, i.e., vehicles. In this 
planning step, each service trip of the provided timetable is assigned to a desig-
nated vehicle. The overall goal is to minimize the cost incurred by the vehicle fleet 
(size-dependent) and by daily operations (path-dependent). In its simplest form, 
the single depot case without further additions, called vehicle scheduling problem 
(VSP), can be solved in polynomial time. However, cost-optimal vehicle schedules 
may involve several line changes for buses throughout the day, which are not desir-
able from a practical point of view. Therefore, Kliewer et al. (2008) proposed sev-
eral methods to reduce their occurrence. This and the introduction of other practi-
cal extensions (e.g. multiple depots, vehicle types or route constraints, see Bunte 
and Kliewer (2009) for an overview) give rise to increasingly challenging optimiza-
tion problems.
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In the context of electric bus systems, an additional aspect of operational 
scheduling concerns the planning of charging operations. The composition of 
vehicle schedules determines (1) route lengths and thus, recharging demand, and 
(2) dwelling times at terminal stations, which provide interesting opportunities 
to perform charging activities. The operational design of charging schedules, 
in turn, is closely intertwined with strategic aspects of infrastructure planning, 
e.g., the location and dimension of charging facilities. Questions of infrastructure 
design, charging scheduling and vehicle scheduling are therefore often addressed 
simultaneously.

An early study in the field of opportunity charging, for example, focused on the 
joint optimization of infrastructure decisions and charging schedules. Given pre-
defined bus schedules, Wang et  al. (2017) assumed that buses charge for a fixed 
recharging duration during layover times at transit centers and specifically addressed 
the interdependent nature of simultaneous charging activities and the number of 
required charges. Hu et al. (2022) studied a different setting and assumed that charg-
ing is allowed at terminal and intermediate stations. The provided model for the 
optimal selection of charging locations showed the benefits of locating charging sta-
tions at intermediate bus stops, especially when passenger boarding times are long 
or when dwelling times at terminal stops are short.

As the introduction of electric technologies already involves a wide range of 
accompanying measures, it is also common to intervene at an earlier level of the 
optimization process and lift the assumption of unchanged vehicle schedules. Liu 
and Ceder (2020), for example, used a lexicographic approach to address the inter-
dependent nature of vehicle schedules and infrastructure dimensions and minimized 
(1) fleet size and (2) the number of required charging stations at terminal stops. 
Stumpe et al. (2021) took a different approach and jointly optimized strategic and 
operational aspects by determining vehicle schedules that minimize the sum of vehi-
cle and infrastructure investments, as well as operational costs.

As operational adjustments are mainly induced by the vehicles’ limited driving 
range, several studies include battery sizing decisions into their planning scope. An 
early study in this context is provided by Kunith et al. (2017), who optimized bat-
tery capacities and the number and location of charging stations within an opportu-
nity charging bus network. Zhou et al. (2022) provided another model for the opti-
mal number of deployed chargers, charging schedules and battery size. Besides the 
deterministic model with many practical considerations, they propose a number of 
robust variants to account for the uncertainty of energy consumption. In contrast 
to the latter two studies, which both built on simplified assumptions about vehicle 
schedules, a combined model for charger deployment, battery sizing and fleet sched-
uling is proposed by Wang et  al. (2022). Further studies on opportunity charging 
networks focus on the technology’s operational characteristics and address problems 
such as the uncertainty of energy consumption (e.g. Liu et al. (2022)) and reopti-
mization due to traffic delays (e.g. Abdelwahed et al. (2021)), peak power demand 
at charging stations (e.g. He et al. (2020)) or the role of battery degradation for dif-
ferent battery use limits (e.g. Zeng et al. (2022)). Summarizing, the existing studies 
often focus on very specific aspects of opportunity charging, assume that essential 
system variables are constant (e.g. vehicle schedules and charging duration), or fail 
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to reflect the wide-ranging consequences of a fleet conversion on the cost of the 
overall bus system.

Opportunity charging is a relatively new concept and initial studies on range-lim-
ited technology options rather focus on the creation of shorter vehicle schedules, 
than on integrating regular recharging events to enhance the vehicles’ driving range. 
In an early study in 1995, Freling and Paixão (1995) investigated the VSP with a 
maximum route time constraint, which may be used to represent technical restric-
tions such as a limited fuel capacity. Haghani and Banihashemi (2002) refined the 
problem formulation for a better adaption to fuel consumption concerns and con-
sidered only actual driving times in the maximum route time constraint, excluding 
interim time periods spend at the depot. An early study explicitly handling electric 
buses in the VSP was conducted by Wang and Shen (2007). The principal novelty 
of this paper is the formulation of a model that reintegrates vehicles into service 
operations when intermediate charging operations are completed. Specifically, vehi-
cles were assumed to be recharged after a given driving time (420  min) and put 
into use again when a pre-defined charging time (180 min) is fulfilled. The above-
mentioned models all make use of a very specific problem structure: the feasibility 
of a vehicle schedule is determined by the first trip’s start time and the last trip’s 
end time. A realistic depiction of a vehicle’s energy consumption, however, does 
not depend on the total time a vehicle spends in operation, but on the accumulated 
path characteristics of the covered route. The VSP with distance, rather than time-
dependent, route constraints cannot exploit the above-described problem structure 
and results in a large number of additional constraints. Li (2014) developed column-
generation-based algorithms to address this issue and successfully solved large-size 
instances with more than 900 trips. In the upcoming years, the practical relevance of 
studies further advanced and more and more technical requirements were incorpo-
rated into the proposed frameworks. van Kooten Niekerk et al. (2017) investigated 
different methods to solve a model considering non-linear charging processes and 
depreciation cost of batteries, which are largely influenced by the batteries’ depth 
of discharge. A more recent study on the non-linear nature of charging profiles and 
battery degradation was published by Zhang et al. (2021). For a detailed review and 
information on further aspects studied within the electric VSP, we refer to Perumal 
et al. (2022).

The above-described variants of the traditional VSP account for limited driving 
ranges and, in more recent studies, integrate occasional recharging operations into 
bus schedules. These operation-centered approaches often fail to reflect system-wide 
implications, such as increased fleet size and its effects on required depot infrastruc-
ture or personnel. Moreover, many results relate to selected bus lines participat-
ing in pilot tests but do not account for the conversion of a whole bus fleet. A fair 
comparison of different technologies, however, should be based on a long-term per-
spective and a comprehensive assessment of all related expenditures. Estrada et al. 
(2022), for example, performed a short-term cost analysis for two selected bus lines 
and focused on the additional number of needed vehicles and charging stations for 
two different charging schemes: charging at the bus depot and charging at on-street 
chargers. The cost comparison of both options showed that charging within the bus 
network is more cost-efficient if service trips are scheduled in a regular manner and 
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when charging events can be skipped in demanding time periods. Though observa-
tions like these do not reflect the impact of a whole fleet conversion, they highlight 
the technology decisions’ strong dependency on route-specific characteristics and 
have led to a growing body of research on electric transit designs with mixed bus 
fleets.

An early study in this context is provided by Fusco et  al. (2013), who consid-
ered buses with internal combustion engines and electric buses with several charg-
ing concepts, including depot charging, terminal charging and charging at en-route 
bus stops. However, the aim of the study was not the optimal technology choice, but 
the comparison of technologies in predefined scenarios. Xylia et al. (2017) went a 
step further and optimized the composition of a bus fleet with opportunity charg-
ing and bio-fuel alternatives as potential technology options. In the investigated bus 
network, bus lines close to major public transport hubs were selected to be oper-
ated with electric buses. The resulting technology mix produced promising results 
with respect to emission, as well as cost reduction. Rogge et al. (2018) provided a 
formal problem description for a heterogeneous bus fleet with two depot-charging 
bus types: a lightweight bus with strictly limited energy and increased recharging 
demand and a long-range bus, mainly charged overnight. The proposed model was 
solved with heuristic and meta-heuristic methods and heterogeneous fleets proved 
to be beneficial in both tested scenarios. Janovec and Koháni (2019) later built on 
this work and developed a linear optimization model for the electric bus scheduling 
problem. The proposed model, however, is only suited for a single charging strategy, 
namely partial charging. Studies on other technology alternatives, such as a com-
bination of diesel and electric buses (Li et  al. 2019) or buses using fast charging 
and dynamic wireless power transfer (Yıldırım and Yıldız 2021) also exist. Tech-
nology options with hydrogen propulsion have received limited attention in the OR 
literature, as state-of-the-art hydrogen buses do not require intermediate fuelling. 
Although their adoption involves some combinatorial decisions, the vast amount of 
literature on this topic is directed towards engineering questions (e.g. Trattner et al. 
2021).

This literature overview reveals that studies on the optimal technology choice of 
zero-emission public bus systems with minimal life cycle cost - potentially reached 
through mixed fleets - are still rare. Also, to evaluate the consequences of a full fleet 
conversion, the interdependent nature of charging and vehicle schedules, fleet size 
and infrastructure design must be addressed. In the present paper, we aim to fill this 
gap by providing a decision-making framework that considers multiple state-of-the-
art technologies and solves the strategic technology decision problem by incorporat-
ing operational planning aspects into an optimization framework that minimizes a 
bus system’s total life cycle cost.

3 � Problem description

The ultimate goal of this research is to identify the optimal technology mix for a 
zero-emission bus system. In the following, we describe the relevant details of the 
investigated technologies, define the optimization task, and discuss the required 
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specifications of vehicles and the bus network. We keep the technical details to a 
minimum and refer to engineering literature for further reading.

3.1 � Technology options

The following emission-free technology concepts were considered as viable options:

3.1.1 � Overnight charging (ONC)

The ONC concept assumes that charging activities of battery buses mainly take 
place overnight, when buses are out of operation. Each vehicle is provided with an 
individual charging point, where charging operations take place with smallest pos-
sible power levels. In spite of the low grid impact of each individual vehicle, simul-
taneously charging all ONC buses in one depot poses high requirements on the elec-
tricity grid.

Although ONC buses are usually equipped with large batteries, their limited driv-
ing range is usually not sufficient to ensure proper service operations for the whole 
day. Besides powertrain consumption, auxiliaries like heating or air-conditioning 
consume substantial amounts of energy. Depending on the operational conditions, 
buses might have to recharge their batteries after several hours of operation. There-
fore, interim charging at the depots’ charging facilities is incorporated into vehi-
cle schedules. Additionally, the utilization of charging stations at closer, centrally 
located company-owned properties is considered as another recharging option, as 
the reduced availability of electric buses during travel and charging times can have 
profound effects on the required fleet size.

3.1.2 � Opportunity charging with supercap buses (OPC + supercaps) or battery buses 
(OPC + batteries)

Opportunity charging is based on the idea of quickly increasing battery charge levels 
in short time slots, namely during dwelling and boarding times at terminal stations 
and commonly shared bus stops. As the construction of charging stations in public 
areas is associated with many legal constraints and considerable financial effort, the 
selection of suitable charging locations requires particular attention. As it is often 
done in literature, we consider terminal stations and bus line intersection points as 
candidate charging locations for OPC. At  terminal stations, bus schedules usually 
contain pauses that are well-suited for charging operations. Since some terminal sta-
tions are located on the outskirts of a city and are only reached by isolated bus lines, 
synergies from joint use of charging infrastructure can also be achieved by locating 
charging stations at network intersection points. Therefore, centrally located inter-
mediate bus stops used by more than one bus line can also present excellent charg-
ing options for OPC. An optimal charging schedule at shared charging stations can 
reduce the number of overall charging points considerably. The adaptation of vehicle 
schedules to extended stopping times, however, increases total circulation times and 
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possibly affects fleet size. As compared to ONC, the effect on vehicle numbers is 
expected to be small.

For OPC, batteries and supercapacitors are available as energy storage systems. 
Supercapacitors can be charged with extremely high power levels, but have limited 
energy density and must be recharged in short time intervals. In contrast, buses with 
batteries provide longer driving ranges and thereby offer greater flexibility for bus 
operators (e.g. skipping charging activities in rush hours, as shown in Fig. 1, begin-
ning of the red line). Yet, buses are usually recharged during night and therefore 
require individual charging points at the depot. Moreover, lower charging power lev-
els result in longer charging activities during the day, reduce the availability of buses 
and can have a greater effect on the required fleet size.

3.1.3 � Fuelling with hydrogen (FC) or overnight charging plus fuelling with hydrogen 
(FC‑REX)

Similar to battery electric vehicles, hydrogen buses are equipped with electrical 
powertrains, batteries, and additionally, fuel cells (FC) and hydrogen tanks. Electric-
ity generated by an electrochemical reaction of hydrogen and air is stored in small 
intermediate buffer batteries. As these propulsion systems offer high flexibility in 
terms of range, traditional bus schedules can be maintained. A great challenge, how-
ever, is the provision of hydrogen. For a zero-emission bus system, also production 
processes of hydrogen must be emission-free. This can currently only be reached 
by electrolysis from water. Depending on the market availability and fuel cell bus 
adoption levels, hydrogen demand can be fulfilled by purchases from third parties or 
an in-house production plant. In any case, hydrogen is intermediately stored at local 
filling stations. A limiting factor, however, is the SEVESO-III directive (European 
Parliament 2012), which requires that the stored amount of hydrogen at a given loca-
tion must remain below 5 tons. In this context, a slightly modified concept, namely 

Fig. 1   Example of State of Charge (SoC) for different charging strategies
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the use of fuel cells as range extenders (FC-REX) becomes attractive. Buses fol-
lowing this concept have larger batteries than traditional FC buses and are charged 
overnight. As opposed to ONC buses, which perform recharges when batteries are 
depleted, batteries of FC-REX buses are continuously recharged through hydrogen 
conversion in fuel cells. As hydrogen is not the primary source of energy in this con-
cept, dimensions of storage and filling systems can be smaller as compared to FC.

3.2 � Problem declaration

Given the range of technology options described in Sect.  3.1, the optimization 
problem consists of choosing a suitable set of technologies that minimize overall 
costs and allow the provision of all prescribed bus services. For each bus line, it is 
required to choose one single technology option. Clearly, the particular character-
istics of a certain bus line, such as route length, topographic properties and avail-
ability of charging locations, apply for all buses operating on this line and yield the 
same influence factors on all of them. Also, an investment into OPC charging sta-
tions is less meaningful, if these are utilized only by a subset of buses serving a line. 
Additionally, operational planning for the bus operator benefits a lot from a strict 
partitioning of lines according to technologies.

In order to avoid adverse effects on service levels and to facilitate the stepwise 
integration of the new bus fleet, we retain the currently given timetables and con-
centrate our planning decisions on fleet composition, vehicle and charging schedul-
ing, and the corresponding infrastructural layout. These problems relate to different 
planning levels (e.g. operational charging scheduling, strategic charger deployment, 
etc.), but a well-reasoned answer to the strategic question of the optimal technology 
choice can only be given in consideration of operational aspects. We use normal 
weekday schedules (having the highest travel demand) as a reference for our plan-
ning framework. If the bus operator does not plan major network adaptions in the 
future, using these plans can represent an adequate solution approach. To account 
for the increased staffing levels (see Jefferies and Göhlich 2020) we track the total 
number of working hours of drivers and price them by an average hourly rate. 
Clearly, including crew scheduling and rostering for decades ahead would be beyond 
the scope of a realistic planning scenario.

3.3 � Economic and technical parameters

The objective of minimizing overall costs is captured by the concept of life cycle 
cost (LCC). LCC refers to all costs that are incurred through an investment, includ-
ing acquisition, running and disposal costs. As these expenditures occur at different 
points in time, the present value of a system component, e.g. a bus, is calculated as 
discounted sum of procurement, maintenance and replacement costs within the plan-
ning horizon, i.e., 20 years in our application. Note that a component’s service life, 
e.g. the operating lifetime of a bus, can be shorter than the overall planning horizon, 
but that we impose a direct replacement at forecasted market rates upon disposal.
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In our framework, system components are divided into route-related, vehicle-
related and infrastructure-related elements, whose LCC are calculated in an ini-
tial preprocessing step. Besides economic calculations, the preparation of techni-
cal input parameters is handled at this stage. Much of the required technical and 
economic information is subject to high uncertainty due to the ongoing technical 
development, and therefore highly debated among experts. We do not claim that 
our parameter choices give a definite answer to this problem, but they serve as a 
realistic example to be used in face of such an extensive decision-making problem. 
Clearly, values will change within the next few years and whenever more accurate 
data becomes available, this can be included in the optimization model. To account 
for the high degree of uncertainty at the current planning stage, an extensive sce-
nario analysis was carried out. Major findings of this analysis are summarized in 
Sect. 5.3. We now discuss the details of the necessary input data and give precise 
values, wherever we are allowed to publish them. When not indicated otherwise, the 
assumed input parameters were gathered and agreed on within the consortium of the 
move2zero project in Graz.

3.3.1 � Route data

The main determinants of route data are energy consumption and path-related cost 
factors, namely costs of electricity, hydrogen and driving personnel. Energy con-
sumption is a crucial factor for system configuration and is influenced by a number 
of different parameters itself (e.g. driving profiles, number of stops, passenger load, 
vehicle weight, use of auxiliaries, ...). In our application, consumption values were 
estimated based on manufacturers’ specifications, industry reports and experience 
from the local bus operator, who already had performed a one-year test phase of 
battery electric buses. For each bus line, the required passenger capacity, and thus 
the size of the bus, namely standard (12-m) or articulated (18-m) bus, was given in 
advance. In order to compile an accurate representation of route-specific consump-
tion profiles, powertrain consumption was estimated based on the average speed 
attained for each bus line. As auxiliaries like heating or cooling consume substantial 
amounts of energy and the transportation system must be designed to operate on 
all days of a year, total energy consumption was calculated for a cold winter day, 
the most critical scenario in our latitudes. To account for an appropriate representa-
tion of energy costs in our objective function, different consumption factors, derived 
from power draw forecasts, based on monthly average temperatures, were used. The 
respective consumption values are given in Table 10. In contrast to battery electric 
buses, energy consumption of fuel cell buses is not expected to increase as much on 
critical winter days. Considering future efficiency gains, base values for hydrogen 
consumption were set to 6 and 9 kg/100 km for 12 and 18 m buses. With respect to 
cost-related parameters, i.e., electricity, hydrogen and driver cost, the specific unit 
values were gathered within the transit agency, forecasted into future values, trans-
formed into LCC factors and aggregated into appropriate measurement units later 
used in the optimization model (see Tables 1, 2).
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3.3.2 � Vehicle data

In order to compile representative bus purchasing costs we divide the total vehicle 
purchasing price for a technology into a common price for the base vehicle, and 
an additional price increase for technology-specific vehicle parts, i.e., the power-
train. To retrieve the total value for technology-specific powertrain costs, different 
configurations for battery, supercap and fuel cell buses were defined and multiplied 
with calculatory unit cost for the respective powertrain system. The technical spec-
ifications of our base scenario are listed in Table  1. Given average life expectan-
cies of vehicles and exchangeable components, maintenance cost, and future price 
predictions, all subsequent costs of initial purchasing decisions were computed for 
the investigated planning horizon of 20 years and aggregated into a total number 
(assuming a discount rate of 3.3 %). Hence, the cost figures reported in Table  1 
include initial acquisition, repair and maintenance costs as well as costs for vehicle 
replacement at the end of their respective operating life. To represent the declin-
ing costs of battery replacement, we applied a logarithmic learning curve, which 
was deduced from the data of a manufacturers’ survey, conducted by TECHNOMA1 
(internal report, 22.09.2021). The yearly vehicle maintenance costs for each tech-
nology vary between 3 and 10 % of the initial purchasing costs, depending on the 
specific technology type and bus size. As henceforth calculated vehicle numbers do 
not include backup vehicles at the depot, a vehicle reserve of 10% was considered by 
including a corresponding markup in expected costs.

Vehicle configurations effect costs, but also lay down the technological frame-
work for charging activities. In practice, many internal (e.g. depth of discharge) 
and external factors (e.g. temperature) have to be considered during charging pro-
cesses, and complex battery management systems are used to ensure optimal battery 

Table 1   Vehicle specifications and aggregated bus costs for different technologies

1 PV = Present Value 2030
2 NMC = Nickel Manganese Cobalt
3 LTO = Lithium Titanium Oxide

12 m/18 m bus ONC OPC+ batteries OPC+ supercaps FC FC-REX

Fuel cell [kW] – - – 64/80 80/100
Nominal battery capacity 

[kWh]
350/500 240/300 40/80 36/36 106/136

Battery type NMC2 LTO3 supercapacitor NMC NMC
Charging power depot 

[kW ]
100 100 – – 50

Charging power network 
[kW]

100 300 600 – –

Charging efficiency [%] 0.97 0.95 0.95 – –
Lifetime [years] 8 10 10 10 10
PV1 bus [Mio. €] 1.846/2.470 2.024/2.656 1.706/2.345 2.487/2.826 2.463/3.087

1  TECHNOMA Technology Consulting & Marketing GmbH, www.​techn​oma.​at

http://www.technoma.at
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performance. In our framework, upper and lower bounds on nominal battery capaci-
ties confine the available range for operational planning. Within this reduced oper-
ating range, we assume a constant charging power. Thus, the amount of charged 
energy is proportional to charging time. This assumption is often found in literature 
(e.g. Olsen et al. 2020; Stumpe et al. 2021 or Wang et al. 2017).

3.3.3 � Infrastructure data

The type and cost of the required hydrogen infrastructure heavily depend on the 
selected production and delivery concept. Hydrogen can be generated in an off-site 
production plant with subsequent delivery (via truck or pipeline), or in company-
owned production plants. Depending on the amount of daily required hydrogen, one 
or the other concept can be regarded as the more economical solution. As we con-
sider mixed fleets, the number of hydrogen buses and consequently, total hydrogen 
demand, are determined as part of the optimization model. Thus, different supply 
concepts must be provided at the input stage and costs for hydrogen infrastructure 
are considered in the form of a step function, with different total infrastructure 
costs for different expansion levels. Because of the SEVESO-III threshold on stored 
hydrogen, the establishment of several, smaller-dimensioned hydrogen stations at 
different locations can be considered to fulfill higher levels of hydrogen demand. An 
exemplary step function for infrastructure costs of hydrogen, with several produc-
tion locations, is provided in Fig. 2. Numerical details of the hydrogen infrastructure 
concept considered for our problem will be given in Sect. 5.1.

Fig. 2   Exemplary step function for H2 infrastructure cost
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Table 2   Introduced parameters

General

cost
energy

(q,l)
Energy-related costs of technology q on bus line l

cost
energy

(s,t)
Energy-related costs of deadhead arc from s to t

costdriver Time-related costs of driving duties

costbus
(q,b)

Costs per bus of bus type b of technology q

cost
charger

(q,n,o)
Costs of charger o at station n for technology q

cost
�

(q,i)
Cost step i of fleet size dependent step cost function of technology q

costkW
i

Cost step i of kW dependent step cost function

costH2

i
Cost step i of H2 dependent step cost function

step
�

(q,i)
Step i of fleet size dependent step cost function of technology q

stepkW
i

Step i of kW dependent step cost function

stepH2

i
Step i of H2 dependent step cost function

powerq Depot charging power for technology q
startt Start time of trip t
endt End time of trip t
dur(s,t) Duration of deadhead trip from s to t

dur
+trip

(s,t)
Duration of deadhead trip from s to t and service trip t

dout
b

Source node of bus type b at the depot
linev Bus line of node v
typev Bus type of node v
locc Location of charging event c
M Big-M

ONC-specific

Chargec Energy amount charged at charging node c
Const Consumption of trip t
Cons(s,t) Consumption from source node s to target node t
SoCmin

v
Minimum state of charge at node v

SoCmax
b

Maximum state of charge at nodes of type b

SoC
discharge

b
Maximum state of charge at which recharging is allowed

OPC-specific

Chargetime
q

l
Necessary charging duration per round of line l

Startc Start of charging event c

H2-specific

Cons
kg

l
Hydrogen consumption of trips of line l

Cons
kg

(s,t)
Hydrogen consumption of deadhead arc from s to t

kWH2

i
Power load of hydrogen infrastructure at step i
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In contrast to LCC for hydrogen infrastructure, which depend on the total level of 
daily filled hydrogen, charging station costs and other depot-related costs (e.g. work-
shop staff) depend on the number of total buses per technology. Buses operating 
under the ONC, OPC+batteries, or FC-REX concept, for example, are fully charged 
overnight. The number of required chargers at the depot is therefore assumed to be 
equal to the number of deployed buses, the associated power loads and costs vary for 
each technology. Another relevant factor is grid access. The aggregated power loads 
of infrastructure at the depot, i.e. charging points and hydrogen plants, can become 
extremely high. As electrical infrastructure is not designed for large simultaneous 
power demands, substantial grid upgrades are required if certain power limits are 
exceeded. Similar to the above-described other elements of depot infrastructure, also 
grid connection costs take the form of a step function.

Besides depot charging, battery electric technology options also build on daytime 
charging at charging stations within the network. In order to find an optimal selec-
tion of charging infrastructure, an input list of candidate sites is required. The open-
ing costs for additional charging stations within the network consist of land, grid, 
and charger costs and vary per number of charging points and total required power 
load. Together with yearly maintenance costs for charging and electricity infrastruc-
ture (approx. 3% of the initial investment costs), these values were added up to an 
incremental cost value per charging point. The concrete cost values for our applica-
tion were gathered with the local bus operator, the local electricity grid operator 
and the consulting firm TECHNOMA, but are not available for publication. Typical 
assumptions for charger costs can be found in Kunith (2017).

4 � Optimization model

The proposed problem formulation is based on different graph representations to 
model vehicle schedules that account for energy requirements of various technolo-
gies. The base network, a graph representation for hypothetical operations without 
range limitations, is used as a basis for the efficient design of technology-specific 
networks. Building upon the same optimal base network for the fulfillment of all 
trips, we add technology-specific adaptations and construct network layers that 
model the operational procedures of each potential technology. Besides the repre-
sentation of each individual technology, these networks can be combined in a multi-
layered graph, which represents the input for the optimal technology mix.

4.1 � Base network

The underlying structure of our model consists of a network where every trip 
between two terminal stations is represented by a node and two nodes are joined 
by an arc if the two associated trips can be performed consecutively by the same 
vehicle. Other networks with nodes describing trips were used, e.g., in Freling and 
Paixão (1995).
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The base network consists of a directed graph G = (V ,A) with nodes 
V = Vtrips ∪ {dout} ∪ {din} and arc set A ⊆ V × V  . Each node t ∈ Vtrips represents 
a service trip, i.e., a trip which is obtained from predetermined timetables with a 
given start and end time and a given pair of terminal stops of a certain bus line l. dout 
and din are source and sink nodes and represent the buses’ presence at the depot at 
the beginning and end of the day. An arc (s, t) ∈ A connects node s with node t and 
describes either idle times or deadhead trips. Idle times occur when a subsequent 
trip starts at the same location, but not immediately after the buses’ arrival; dead-
head trips occur between different terminal stations across the network and the bus 
depot and are usually carried out without passengers. The introduced variables, sets 
and paramters are listed in Table 3.

The arcs of the base network can be classified into pull-out trips, pull-in trips 
and trip-trip connections. Pull-out trips are outgoing arcs from the depot node dout 
to each service trip t, pull-in trips connect each trip node t with the depot node din . 
Trip-trip connections are links between service trips that can be served consecu-
tively by the same vehicle. To guarantee this feasibility, only trip nodes with depar-
ture times later than the preceding trips’ arrival times are connected. Moreover, 

Table 3   Introduced variables, sets and parameters for the base network

Variables

l(i,j) ∈ {0, 1} 1 if at least one trip-trip arc between lines i 
and j is used

0 otherwise
a(s,t) ∈ {0, 1} 1 if arc (s, t) ∈ A is used

0 otherwise
x� ∈ ℕ Number of required buses

Sets

L Set of bus lines l
A Set of arcs from source node s to target node t
A−(v) Set of preceding nodes of node v
A+(v) Set of successive nodes of node v
Att Subset of trip-trip connections
Att
(i,j)

Subset of trip-trip connections that connect 
bus lines i and j

Vtrips Set of trip nodes t

Parameters

c� Penalty for buses
ctt Penalty for trip-trip connections
cll Penalty for line-line connections
dout Source node at the depot
din Sink node at the depot
M Big-M: total number of trips
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the bus type associated with each trip node presents a limitation for feasible trip-
trip connections. Each trip node is characterized by a designated bus line, which is 
strictly operated by a standard or an articulated bus. As trip-trip arcs represent either 
idle times or deadheads between two consecutive trips served by one vehicle, only 
trip nodes characterized by the same bus type are connected in the network.

4.2 � Network reduction

Since a full representation of all feasible arcs yields a network of excessive size, 
which cannot be solved within reasonable time, the following arc reduction strate-
gies are applied: 

1.	 Restriction of waiting times
	   In order to avoid impractical turning times, lower and upper bounds are 

imposed on waiting times at terminal stations. In our tests, the lower bound was 
not used (set to 0) and the upper bound was set to 60 minutes. This restriction has 
no effect on the resulting number of necessary buses but reduces the number of 
potential trip-trip connections considerably.

2.	 Optimization of trip-trip connections
	   We aim to identify a reduced subset of trip-trip connections and choose only 

those connections that are necessary to operate the network with a minimum 
number of buses. We identify these arcs by solving a technology-neutral single 
depot vehicle scheduling problem. It can be expected that the trip-trip connec-
tions used in this base network will be highly relevant also for our more general 
problem. Allowing line changes in a bus network can have a positive effect on the 
required fleet size, but complicates day-to-day operations. Therefore, our model 
minimizes not only the number of vehicles, but also considers a linear combina-
tion of the total number of line changes and the number of bus lines involved in 
any line changes. The latter is especially relevant in subsequent chapters since 
some bus lines cannot be operated with all technologies. In constraint (2) of the 
following formulation, the fleet size is determined by calculating the total num-
ber of depot-leaving arcs. Constraint (3) ensures that each service trip in Vtrips 
is covered by a vehicle, thus the sum of incoming arcs must be 1. Constraint (4) 
preserves the vehicle flow by ensuring that each node has the same number of 
in- and outgoing arcs. Finally, in constraint (5) variable l(i,j) is determined, which 
indicates whether a trip-trip connection between two different lines i and j exists. 
This variable is not strictly necessary but was used to avoid extensive changes of 
vehicles between lines. A lower number of different line combinations in vehi-
cle schedules simplifies the real-world implementation. Moreover, it can reduce 
potential effects on the technology decision of connected bus lines if certain lines 
cannot be operated with the cost-minimal technology and other possible trip-trip 
connections are not considered.

(1)min x� ∗ c� +
∑

(s,t)∈Att

a(s,t) ∗ ctt +
∑

(i,j)∈L×L∣i≠j

l(i,j) ∗ cll
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The resulting vehicle schedules identify trip-trip connections that are prerequisites 
for bus operations with a minimum number of buses. For a graphical illustration, 
see Fig. 3. In the following sections, we use this reduced set of trip-trip arcs, as well 
as all pull-in and pull-out arcs as a basis for the construction of technology-specific 
networks. This collection of arcs is referred to as A∗.

If the considered bus network uses multiple depots, the described network for-
mulation can be extended by additional depot nodes with pull-in and pull-out arcs to 
each service trip. Moreover, an additional index must be introduced for the decision 
variable x� , such that the number of buses can be tracked for each depot individually.

4.3 � Technology‑specific networks

Building upon the results of the preceding subsections, each technology is modeled 
on the basis of the above-described base network G = (V ,A∗) and extended with 

(2)x� =
∑

t∈A+(dout)

a(dout ,t)

(3)
∑

s∈A−(v)

a(s,v) = 1 ∀v ∈ Vtrips

(4)
∑

s∈A−(v)

a(s,v) =
∑

t∈A+(v)

a(v,t) ∀v ∈ Vtrips

(5)
∑

(v,t)∈Att
(i,j)

a(v,t) ≤ l(i,j) ∗ M ∀(i, j) ∈ L × L ∣ i ≠ j

Fig. 3   Solution of a base network
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technology-specific modifications. The resulting technology networks can be viewed 
individually or as a multi-layered graph, whereas each technology is represented by its 
individual graph layer, and graph layers are connected through converging arcs at depot 
nodes.

4.3.1 � ONC

The ONC network is built as a directed graph GONC = (VONC,AONC) , with 
VONC = Vtrips ∪ Vc and AONC = A∗ ∪ Ac . Vc is a set of nodes representing potential 
charging activities, which are inserted after service trips. The amount of charged 
electricity during these interim charging activities is restricted to a discrete set of 
possible charging loads. As also power levels are predetermined, the duration of 
each available charging operation is known in advance. A charging node c is there-
fore characterized by a concrete start and end time as well as a charging location 
n. As the decision for building charging stations at different locations is not fixed 
beforehand, each bus line is provided with arcs from every trip node to all potential 
charging locations, i.e. the depot and strategically selected network sites. In order 
to reduce the set of these deadhead arcs, we chose for all trip nodes of line l only 
those trips, whose end terminal lies closer to the charging station’s location than 
their starting terminal.

Charging activities are assumed to start immediately after the buses’ arrival: 
Going from a trip node t to a charging node c the start time is defined as endt plus 
deadhead time dur(t,c) . As the duration of charging events is discretized, also the end 
time of charging node c is available in advance. In order to continue vehicle deploy-
ment after charging, deadhead arcs to service trips of all bus lines are introduced, 
if nodes are characterized by the same bus type and departure times of subsequent 
trips are reachable. As a prompt reintegration in service operations is desirable, a 
maximum idle time after charging limits the set of possible connections. The set of 
additional arcs leaving and entering charging events is summarized in Ac.

The number of timetabled trips varies by time of the day and usually takes 
a form as depicted in Fig.  4, in transportation planning also referred to as camel 
curve (Kliewer et  al. 2008). The peak number of simultaneous trips provides a 
lower bound for the minimum fleet size. As ONC buses start their operations with 
fully charged batteries and premature recharges are unlikely to be optimal, charging 
events in early rush hours are dismissed. Towards the end of the day, when more and 
more buses return from daily operations and occupy chargers to charge their batter-
ies overnight, interim charging events at the depot are also dismissed. An exemplary 
vehicle schedule of a solved ONC network is depicted in Fig. 5.

4.3.2 � OPC + supercaps and OPC + batteries

In order to account for charging opportunities at intermediate bus stops, trips of the 
base network are further divided into two or several partial trip nodes. A trip starting 
at terminal station v, passing potential charging station n and ending at terminal sta-
tion w is partitioned into a trip node from v to n and another trip node from n to w. 
At potential charging location n, a possible charging event is represented through the 
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insertion of charging node c. Each charging node c is characterized by its’ specific 
location, the earliest possible start time startc , and a maximum charging duration 
chargetimel . We assume that the sum of all charging operations along a line must 
fully compensate the amount of consumed energy in each rotation. This assumption 
seems legitimate, as supercapacitors are characterized by very small storage capaci-
ties and buses highly depend on frequent recharges. Based on this assumption, we 
can derive a prescribed charging duration from a bus line’s consumption profile. As 

Fig. 4   Number of service trips by time of the day

Fig. 5   Solution of an ONC network
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charging activities can be split over several stations along a route, the length of indi-
vidual charging activities is not explicitly defined in advance. Overall, the total dura-
tion of performed charging events must meet the predefined chargetimel per rotation. 
To enter a charging node c, so-called charging-in arcs, which connect the end of 
trip nodes with the respective charging node are inserted. As some of the potential 
charging sites provide room for several chargers at a station, duplicated nodes and 
charging-in arcs are created for each potential charger at a station. Moreover, arcs 
leaving charging nodes, called charging-out arcs, are added between the charging 
event and subsequent trips on the same bus line, if they start within a certain time 
limit after charging. Additionally, new arc connections between partial trips of pre-
viously unified trips (e.g. the trip from v to w) are inserted, to allow a direct trip 
connection without intermediate charging. All newly inserted network arcs repre-
sent waiting arcs with zero duration, i.e., they do not occupy any time, as the loca-
tion of buses does not change. As leaving charging nodes via connecting trips is 
not possible at all times, additional pull-in arcs to the depot are added from each 
potential charging node. A network solution of exemplary bus line C operated with 
OPC+supercaps is provided in Fig. 6.

The OPC+batteries network is defined in a similar manner as OPC+supercaps. 
The original trip nodes are divided into partial trips and provided with additional 
trip-trip connections. Charging nodes are inserted after trip nodes ending at potential 
charging locations. As the maximum charging duration depends on the respective 
technology, a non-identical set of charging-out arcs is produced for OPC+batteries. 

Fig. 6   Solution of an OPC + supercaps network
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Another distinction originates in the size of deployed battery capacities. In many 
cities, rush hours bring the capacities of bus networks to their limits. The generally 
larger energy buffer of conventional traction batteries used in the OPC+batteries 
concept allows to omit charging events during time periods, where bus frequencies 
are high and an enforced charger occupation at every circulation would result in the 
need for additional charging stations; see Fig. 7.

4.3.3 � FC and FC‑REX

Hydrogen-based technologies do not require special considerations during opera-
tions throughout the day. Batteries of FC-REX buses are assumed to be charged dur-
ing the night. Thus, they require charging infrastructure at the depot, but no charging 
events must be scheduled during the day. Therefore, FC and FC-REX networks are 
simply based on the directed graph of the base network presented in Sect. 4.1. If the 
hydrogen filling station is not located directly at the depot and buses must make a 
detour for their daily hydrogen refilling, pull-in trips can be adapted to account for 
longer traveling distances.

4.4 � ILP representation

The developed ILP builds upon the described networks and can be structured into a 
general part, represented by constraints (6)–(18) and technology-specific parts, 

Fig. 7   Solution of an OPC + batteries network
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represented by constraints (19)–(45). The major decision variables t(q,l) , a(s,t) and z∗ 
are defined in the general model constraints. The binary variable t(q,l) indicates 
whether technology q is chosen for bus line l. Variables of type a(s,t) are used to 
model the selection of arcs in the underlying technology networks. z∗ variables indi-
cate the level of bus numbers per technology ( z�

(q,i)
 ) and infrastructure requirements 

at the depot ( zkW
i

 , zH2
i

 ). The full list of decision variables and used sets is provided in 
Tables 4 and 5. A preliminary version of the following model was described in Frieß 
and Pferschy (2021).

(6)

min
∑

q∈Q

∑

l∈L

t(q,l) ∗ cost
energy

(q,l)
+

∑

(s,t)∈A

a(s,t) ∗ cost
energy

(s,t)
+
∑

q∈Q

dq ∗ costdriver

+
∑

q∈Q

∑

b∈B

�(q,b) ∗ costbus
(q,b)

+
∑

q∈Q

∑

i∈I
�
q

z
�

(q,i)
∗ cost

�

(q,i)
+

∑

i∈IkW

zkW
i

∗ costkW
i

+
∑

i∈IH2

zH2
i

∗ costH2
i

+
∑

q∈Q

∑

n∈Nq

∑

o∈On

v
q

(n,o)
∗ cost

charger

(q,n,o)

(7)
∑

q∈Q

t(q,l) = 1 ∀l ∈ L

(8)
∑

v∈A−(t)

a(v,t) = t(q,l) ∀q ∈ Q, l ∈ L, t ∈ Vl

(9)
∑

s∈A−(v)

a(s,v) =
∑

t∈A+(v)

a(v,t) ∀v ∈ V ∣ v ∉ {dout, din}

(10)�(q,b) =
∑

t∈A+(dout
b

)

a(dout ,t) ∀q ∈ Q, b ∈ B

(11)x�
q
=
∑

b∈B

�(q,b) ∀q ∈ Q

(12)xkW
q

= x�
q
∗ powerq ∀q ∈ QkW

(13)
∑

i∈I

z
�

(q,i)
∗ step

�

(q,i)
= x�

q
∀q ∈ Q

(14)
∑

i∈I

zkW
i

∗ stepkW
i

=
∑

q∈Q

xkW
q

+ xkW
H2

(15)
∑

i∈I

zH2
i

∗ stepH2
i

=
∑

q∈{FC,FC-REX}

xH2
q
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Table 4   Introduced variables

General

a(s,t) ∈ {0, 1} 1 if arc from source s to target t is used
0 otherwise

t(q,l) ∈ {0, 1} 1 if technology q is chosen for line l
0 otherwise

�(q,b) ∈ ℕ Number of buses of bus type b of technology q
x�
q
∈ ℕ Total number of buses of technology q

xH2

q
∈ ℕ Total hydrogen demand of technology q

xkW
q

∈ ℕ Total depot power demand of technology q

xkW
H2

∈ ℕ Total depot power demand of hydrogen infrastructure

z
�

(q,i)
∈ {0, 1} 1 if cost step i of � cost function of technology q is chosen

0 otherwise
zH2

i
∈ {0, 1} 1 if cost step i of H2 cost function is chosen

0 otherwise
zkW
i

∈ {0, 1} 1 if cost step i of kW cost function is chosen
0 otherwise

dq ∈ ℕ Duty hours of technology q

ONC-specific

�+
v
∈ ℕ Remaining charge when leaving node v

�v ∈ {0, 1} 1 if remaining charge at node v forbids charging
0 otherwise

v
q

(n,o)
∈ {0, 1} 1 if charger o at station n is built

0 otherwise

OPC-specific

b
q

(l,n)
∈ ℕ Charging time at charging station n at line l

bstart
c

∈ ℕ Start of charging at charging node c
bend
c

∈ ℕ End of charging at charging node c
gstart
(c,m)

∈ {0, 1} 1 if charging event c already started at time step m
0 otherwise

f end
(c,m)

∈ {0, 1} 1 if charging event c did not end by time step m
0 otherwise

u(c,m) ∈ {0, 1} 1 if charging event c is taking place in time step m
0 otherwise

v
q

(n,o)
∈ {0, 1} 1 if charger o at station n is built for technology q,

0 otherwise
w(c,t) ∈ ℕ Time between start of charging event c and start of preceding trip t
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The overall objective of our model is to minimize LCC of the electric bus network. 
LCC are composed of route-dependent ( costenergy , costdriver ), vehicle-dependent 
( costbus ) and infrastructure-dependent cost drivers ( cost� , costkW , costH2 , costcharger ). 
In constraint (7), each bus line l is assigned to exactly one electric technology 
option. Constraints (8)–(10) are similar to constraints (2)–(4) and specify network 
flow and vehicle numbers per technology option and bus length. As infrastructure-
related costs depend on total vehicle numbers, the sum of differently sized buses per 
technology is calculated in (11). In (12), the power load at the depot is calculated 

(16)
∑

i∈Iq

z
�

(q,i)
= 1 ∀q ∈ Q

(17)
∑

i∈IkW

zkW
i

= 1

(18)
∑

i∈IH2

zH2
i

= 1

Table 5   Introduced sets

Q Set of technology options q
QkW Set of overnight-charging options {ONC, OPC+batteries, FC-REX}

QOPC Set of OPC-based options {OPC+supercaps, OPC+batteries}

QH2 Set of hydrogen-based options {FC, FC-REX}
B Set of bus lengths b
Iq Set of cost intervals i of step-wise cost function of technology option q
IkW Set of cost intervals i of kW-dependent step-wise cost function

IH2 Set of cost intervals i of H2-dependent step-wise cost function
L Set of bus lines l
A∗ Subset of arcs from the base network:

All pull-in and pull-out arcs, optimized trip-trip arcs
A Set of all network arcs from source s to target t
An ⊆ A Set of incoming arcs of simultaneous charging events at station n
A−(v) Set of preceding nodes of node v
A+(v) Set of successive nodes of node v
N Set of potential OPC charging stations n
Nq Set of potential charging stations n of technology q
N

q

l
⊆ Nq Set of potential charging stations n of technology q along bus line l

On Set of potential chargers o at charging station n
M Set of discrete time steps m
V Set of network nodes v
Vc Set of charging nodes c
Vtrips Set of trip nodes t

Vl Set of trip nodes of bus line l
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for technologies that charge overnight. Constraints (13)–(15) take the total number 
of buses per technology, the total power load over all technologies, and the total 
hydrogen demand and translate these figures into binary variables z∗

i
 , which indicate 

the related step of the step-wise cost function for the objective function. Constraints 
(16)–(18) assure that only one level of the step-wise cost function can be chosen.

The ONC concept assumes that charging activities only take place occasion-
ally. In order to determine the charging demand between trips, the batteries’ state 
of charge is explicitly recorded at each network node. In constraint (19), the start 
values at dout are set to the maximum SoC of each bus type b, as batteries of both 
12- and 18-meter buses are fully charged during nights. Constraint (20) requires that 
the remaining SoC is constantly kept above a minimum level SoCmin . In (21) and 
(22), the most recent SoC is calculated for each trip- and service node. (21) assures 
that the SoC of a trip node t is set to a value lower than the SoC of the preceding 
node v minus the consumption of the deadhead trip from v to t and the consumption 
of trip t itself. When the arc connection between v and t is not being used, node t 
is simply bounded by SoCmax . In constraint (22), analogous updates are made for 
charging nodes v. The SoC when leaving a charging node v is calculated by sub-
tracting the energy consumption of deadhead trip (s, v) and adding the amount of 
charged energy at charging node v to the SoC of the preceding node s. Constraints 
(23) and (24) forbid deadhead trips to charging stations shortly after charging, but 
only when a certain level SoCdischarge is reached. Moreover, the scheduling of simul-
taneous charging events at a station is limited to the maximum number of available 
chargers in (25). Constraint (26) assures that the use of an additional charger o is 
only considered when charger o − 1 is already occupied. The lexicographic usage of 
chargers also breaks symmetries. Finally, in (27), the amount of duty hours of driv-
ing personnel is calculated as the sum of all deadhead and service trips. As daytime 
charging of ONC buses takes considerable time and does not have to be monitored, 
time spent at charging stations is not included in staffing costs.

(19)�+
dout
b

= SoCmax
b

∀b ∈ B

(20)�+
v
≥ SoCmin

v
∀v ∈ Vtrips ∪ din

(21)
�+
t
≤ �+

v
− a(v,t) ∗ (cons(v,t) + const)

+ (1 − a(v,t)) ∗ SoCmax ∀t ∈ Vtrips, v ∈ A−(t)

(22)
�+
c
≤ �+

s
− a(s,c) ∗ (cons(s,c) − chargec)

+ (1 − a(s,c)) ∗ SoCmax ∀c ∈ Vc, s ∈ A−(c)

(23)SoCmax
v

∗ �t ≥ �+
t
− SoC

discharge

b
∀t ∈ Vtrips, b = typet

(24)a(t,c) ≤ 1 − �t ∀t ∈ Vtrips, c ∈ A+(t)



1 3

Planning a zero‑emission mixed‑fleet public bus system 

The model constraints for OPC+supercaps and OPC+batteries technologies are 
almost identical. For each bus line l, a predetermined total chargetimel has to be ful-
filled in each rotation through charging at either one or more potential charging sta-
tions along the line. Therefore, the total sum of charging times bq

(l,n)
 across different 

stations n has to equal chargetimeq
l
 , if technology q is chosen for a line. A positive 

charge time at a station n requires incoming arcs for the respective charging events 
of each rotation, as stated in (29). As the duration of charging activities at a given 
station is not set beforehand, charging stops of zero length are forbidden in (30). The 
set of potential subsequent trips is further confined in (31), such that only connec-
tion trips with start times greater or equal than the charging node’s end time bend

c
 can 

be used. Constraints (32) and (33) are used to determine the concrete start and end 
times of charging activities in natural numbers. The binary auxiliary variables gstart 
and f end set in (34) and (35) translate this information into a binary vector created in 
(36), which indicates whether a charging spot has to be reserved for charging event c 
at time step m. If a charger o at station n is occupied by any charging event, the 
charger has to be established and binary variable v(n,o) is set to 1. Constraint (38) 
simply controls the order in which chargers are considered, similarly to (26). Con-
straint (39) ensures that a station can only be used for one technology, either 
OPC+supercaps or OPC+batteries. This was required in our application for practi-
cal reasons, but may be dropped wherever dual charging stations are technically fea-
sible. As charging activities of OPC buses take place in the presence of bus drivers, 
duty hours of driving personnel include trip durations, charging times, and waiting 
periods, which arise between charging operations and trip connections. The sum of 
the latter two is defined in (40) and is calculated as the difference between the start 
of charging event c and the start of successive trip t. The total sum of duty hours is 
calculated in (41). As buses with supercapacitors are fully charged within minutes 
and buses leave the depot over a longer time period, the scheduling of precharging 
processes does not constitute a bottleneck and can be handled by an informal 
scheme. The demand for simultaneous chargers for supercapacitors at the depot is 
approximated by the total number of supercapacitor charging stations distributed 
within the network. The total power load for precharging OPC+supercaps at the 
depot is therefore calculated in (42) as product of the number of charging stations 
within the network and the maximum charging power.

(25)
∑

o∈On

vONC
(n,o)

≥
∑

(t,c)∈An

a(t,c) ∀n ∈ NONC

(26)vONC
(n,o)

≤ vONC
(n,o−1)

∀n ∈ NONC, o ∈ On ∣ o ≠ 1

(27)
∑

(s,t)∈A

dur
+trip

(s,t)
∗ a(s,t) ≤ dONC
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(28)
∑

n∈N
q

l

b
q

(l,n)
= chargetime

q

l
∗ t(q,l) ∀q ∈ QOPC, l ∈ L

(29)a(t,c) ∗ chargetime
q

linec
≥ b

q

(linec,locn)
∀q ∈ QOPC, c ∈ Vc, t = A−(c)

(30)b
q

(linec,locn)
≥

∑

t∈A−(c)

a(t,c) ∀q ∈ QOPC, c ∈ Vc

(31)bend
c

≤ startt ∗ a(c,t) + (1 − a(c,t)) ∗ M ∀q ∈ QOPC, c ∈ Vc, t ∈ A+(c)

(32)bstart
c

= a(t,c) ∗ startc ∀q ∈ QOPC, c ∈ Vc, t = A−(c)

(33)bend
c

= bstart
c

+ b
q

(linec,locn)
∀q ∈ QOPC, c ∈ Vc

(34)bstart
c

≥ (1 − gstart
(c,m)

) ∗ (m + 1) ∀q ∈ QOPC, c ∈ Vc,m ∈ M

(35)m − 1 ≥ bend
c

−M ∗ f end
(c,m)

∀q ∈ QOPC, c ∈ Vc,m ∈ M

(36)u(c,m) = f end
(c,m)

+ gstart
(c,m)

− 1 ∀q ∈ QOPC, c ∈ Vc,m ∈ M

(37)v
q

(n,o)
∗ M ≥

∑

c∈Vno

∑

m∈M

u(c,m) ∀q ∈ QOPC, n ∈ Nq, o ∈ On,m ∈ M

(38)v
q

(n,o)
≤ v

q

(n,o−1)
∀q ∈ QOPC, n ∈ Nq, o ∈ On ∣ o ≠ 1

(39)
∑

q∈QOPC

v
q

(n,1)
≤ 1 ∀n ∈ N

(40)w(c,t) = startt ∗ a(c,t) − startc ∗ a(c,t) ∀q ∈ QOPC, c ∈ Vc, t ∈ A+(c)

(41)

∑

c∈Vc

∑

t∈A+(c)

w(c,t)

+
∑

(s,t)∈A

a(s,t) ∗ dur(s,t) ≤ dq ∀q ∈ QOPC

(42)xkW
q

=
∑

n∈Nq

v
q

(n,1)
∗ powerq ∀q ∈ {OPC + supercaps}
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The two hydrogen-based technologies FC and FC-REX require only little technol-
ogy-specific adaptions. In (43), the total hydrogen demand of each technology is 
calculated as hydrogen consumption of all operated service and deadhead trips, 
whereas the former is substituted by accumulated consumption figures for whole bus 
lines. While the dimension of required hydrogen infrastructure was defined in (15), 
the corresponding power load xkW

H2
 of hydrogen infrastructure is specified in (44). 

The power load for nightly charging operations of FC-REX buses was specified in 
(12). Finally, in (45), the drivers’ duty hours of hydrogen-based operations are cal-
culated as the sum of deadhead and service trip durations.

In the proposed solution framework, the initial step is solving an ILP for each 
individual technology. To this end, five distinctive models, each composed of the 
described general model part (6)–(18) and the respective technology-specific con-
straints, are set up and computed. Since practical considerations might give prefer-
ence to a uniform bus fleet to simplify procurement and maintenance operations, 
also these results provide valuable information for the decision maker. Ultimately, 
the full optimization model (6)–(45), which considers an arbitrary mix of technolo-
gies, is created and solved.

5 � Results

The presented framework was applied to determine the optimal technology split for 
the bus system in Graz, Austria. In the investigated setting, the commercial solver 
Gurobi generated good-quality solutions within acceptable computation times 
(Gurobi Optimization, LLC 2022). The calculations were run on a 64-bit operating 
system with an Intel® CoreTM i5-9500 CPU @3.00GHz processor and with 32 GB 
RAM. The proposed ILPs were implemented in Python and solved with Gurobi 9.0. 
In order to reduce the computational burden for the calculation of the optimal tech-
nology mix, the solver was provided with an incumbent solution from the previously 
computed most cost-efficient individual technology, as this technology is likely to 
appear also in the optimal technology mix. Moreover, we stopped the computation 
when the LP-gap reported by Gurobi reached 2%, which required roughly 10 h of 
computation time.

(43)xH2
q

=
∑

l∈L

t(q,l) ∗ cons
kg

l
+

∑

(s,t)∈A

a(s,t) ∗ cons
kg

(s,t)
∀q ∈ QH2

(44)xkW
H2

=
∑

i∈I

zH2
i

∗ kWH2
i

(45)dq ≥
∑

(s,t)∈A

dur
+trip

(s,t)
∗ a(s,t) ∀q ∈ QH2
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5.1 � Real‑world application

The current bus fleet of Graz is composed of 170 Diesel buses, which cover more 
than 33.500 km per day. In light of minor future network adaptions, it is planned to 
fulfill more than 4.000 service trips on 41 bus routes on a regular working day. The 
henceforth reported computational results are based on the timetables of a regular 
working day. Geographically, the city is situated in a basin region. An early adoption 
of zero-emission buses provides not only benefits with respect to carbon emissions, 
but also in view of local air quality. With a first demonstration phase of fuel cell and 
battery electric buses beginning in 2024, the full fleet conversion is planned to be 
completed in 2030. As we only consider electric technology options in the technol-
ogy mix, our calculations relate to a 20-year planning horizon, starting in 2030 and 
ending in 2050. The results of our calculations are based on currently applicable 
planning assumptions, which may be updated when new information becomes avail-
able in the course of the demonstration phase.

For the deployment of hydrogen-based technologies, various city-specific infra-
structure concepts have been designed by HyCentA (Hydrogen Center Austria). 
Infrastructure concept A, as presented in Table 6, serves as input for the base-case 
scenario. In the first expansion stage, hydrogen is bought from a third-party vendor 
and delivered to the depot. If daily hydrogen demand exceeds the upper bound of 
140 kg, hydrogen is produced in company-owned production plants. In each addi-
tional expansion stage, a new production plant with 1.4 tons of daily filling capacity 
is established at a separate location. The respective total costs of infrastructure are 
given in Table  6. The associated hydrogen production costs of 3.44 €/kg of each 
expansion stage arise in addition to the total infrastructure cost and are not to be 
mistaken with production costs usually found in manufacturer’s specifications, as 
these prices typically include proportional costs of infrastructure. As we attribute 
hydrogen costs to routes, rather than infrastructure, different production costs for 
different expansion stages, as specified in initial concept drafts, were not considered 
in the given setting and cost differences among expansion stages were counted up on 
infrastructure costs.

Table 6   Hydrogen infrastructure concept A–hydrogen storage at several locations

1 Lower bound of daily filled hydrogen
2 Upper bound of daily filled hydrogen

Exp. stage Location LB H21 [kg] UB H22 [kg] infrastructure cost 
[LCC in Mio. €]

production 
cost [€/kg]

0 Depot 0 0 – –
1 Depot 1 140 9.47 3.44
2 Site 1 141 1564 28.72 3.44
3 Site 2 1565 2988 47.98 3.44
4 Site 3 2989 4392 67.34 3.44
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5.2 � Base scenario

The results of our computations suggest that a mixed electric bus fleet can indeed 
lead to monetary advantages. The optimal technology mix of the baseline scenario 
consists of 12 OPC+supercaps and 29 ONC bus lines, as represented in Fig. 8a. Bus 
lines operating under the OPC + supercaps concept are generally highly frequented 
and have circulation times above the average. Overall, 90 vehicles and 10 charging 
stations, equipped with 14 chargers in total, are required to operate these lines. In 
comparison, buses operated under the ONC concept perform recharges exclusively 
at the depot and no additional charging locations are utilized, which can be well 
explained by their high fixed costs. Coincidentally, also ONC-operated bus lines 
require the deployment of 90 vehicles, and a total of 180 buses is needed to guaran-
tee smooth bus operations on all working days throughout the year.

A comparative cost breakdown in individual cost drivers is provided in Table 7. 
In the optimized technology mix, bus fleet LCC (life cycle cost) make up 38.08% 
of the total costs. With 56.85%, daily operation has turned out to be the larg-
est cost driver. The major part originates from personnel costs, which differ only 
slightly between technologies. Personnel costs are directly proportional to driving 
hours (including short-term charging for OPC + supercaps and OPC + batteries, 
but excluding nightly charging as well as daytime recharging at the depot). Clearly, 
aspects of crew scheduling for a 20-year planning horizon are beyond the scope of 
our framework. The other part of daily operations stems from energy costs, which 
vary significantly between different technologies but make up only small shares of 

Fig. 8   Optimal technology mix of the baseline scenario
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total LCC (note that all cost values were forecasted in 2021). Also infrastructure 
investments, which can be very high in the first place, vary significantly between 
technologies. In the optimized technology mix, total infrastructure costs make up 
5.07% of total LCC.

A comparison among technologies shows that a network purely operated by FC 
buses results in a 6.20% increase in LCC in comparison to the optimal technology 
split. A pure FC-REX network exceeds LCC of the optimal MIX by 9.83%. Hydro-
gen and overall energy costs are lower for FC-REX, as compared to FC, but vehi-
cle, as well as infrastructure costs, are considerably higher. While greater vehicle 
costs result from exogenous input parameters, higher infrastructure costs arise from 
an additional need for charging stations and an insufficient reduction of hydrogen 
demand, which fails to permit a downsizing of infrastructure. The smallest achiev-
able fleet size for the given bus network consists of 160 vehicles (without backup) 
and is reached by hydrogen-based technologies. A network purely operated by ONC, 
in comparison, requires 188 vehicles per day. Total LCC, however, are only 1.53% 
higher than total LCC of the optimal technology mix and upfront infrastructure costs 
are reduced by approx. 20 Mio. €.

Solutions for OPC+batteries and OPC+supercaps are hardly comparable with 
other alternatives and are therefore shown separately. A limited list of potential 
charging locations can make a purely electric system operation under the OPC con-
cept impossible. As this was the case for the bus network in Graz, a high penalty for 
non-electric bus lines was introduced in the objective function to retrieve the highest 
possible coverage of OPC. The resulting cost tables (without penalties) account for 
a varying subset of electric bus lines in each scenario, namely 38 for OPC+batteries 
and OPC+supercaps in the base case.

5.3 � Scenario analysis

The results described in Sect. 5.2 depend on a large set of input assumptions con-
cerning technical data, cost values and system parameters. As we are dealing with 
a long-term planning problem for technologies still under development, many of 
these input values remain uncertain. With roughly 40 different types of parameters 
at hand, a study with three levels (low, middle, high) per factor would result in 
340 = 1.2 ∗ 1019 scenarios, if all combinations were tested in a full factorial design. 
Therefore, only a carefully chosen subset of scenarios was studied. Altogether, we 
assembled 104 scenarios, partitioned into four runs, each of which pertaining to a 
specific topic.

At first, in run 1, sensitivity tests with respect to changes in single input parame-
ters were performed. Runs 2, 3 and 4 were then created to gain a deeper understand-
ing of hydrogen-, charging- and energy-related factors, respectively. An overview 
of the most relevant scenarios and main findings is provided in Table 8. A detailed 
discussion of our scenario analysis is available in an extended online version of 
this article.2 The computation of each scenario consists in solving an ILP for each 

2  https://​optim​izati​on-​online.​org/?p=​23502.

https://optimization-online.org/?p=23502
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affected individual technology, as well as solving the ILP for the optimal technology 
mix. The respective running times heavily depend on the specific input setting and 
may take from several hours up to one day (on a standard PC as described before) 
to reach an acceptable solution quality. A remarkable observation is that scenarios 
become more difficult to solve when the ONC network becomes more constrained, 
either through lower battery capacities or higher consumption values. Whenever 
possible, we used the feature of multi-scenario models in Gurobi, which allows to 
solve several scenarios simultaneously, rather than formulating and solving separate 
models for each individual scenario.

6 � Conclusion

In this paper we developed an optimization model for determining a mix of emis-
sion-free technologies covering all lines of an urban bus network in a medium-sized 
city. The set of available technologies consists of overnight charging, different vari-
ants of opportunity charging, hydrogen fuelling, and overnight charging with hydro-
gen fuelling for range extension. The objective was the minimization of life cycle 
costs over a 20-year planning horizon, taking into account acquisition, running, and 
personnel costs as well as costs for the necessary charging and refueling infrastruc-
ture. As an input to our ILP model an extensive data set was collected, comprising 
technical parameters and cost values for all relevant components of the urban bus 
system in the city of Graz, Austria. By an appropriate modification of this input data 
set the derived framework will be applicable for other cities with little effort.

Our results suggest that the deployment of a mixed bus fleet can indeed lead to 
monetary advantages in comparison to single-technology solutions. Specifically, a 
mix of ONC and OPC+supercaps turned out to be optimal for the investigated bus 
network. A critical assumption, however, was that charging operations are allowed 
to take place at intermediate bus stops along the lines. When charging is restricted 
to end stations, the cost advantage of OPC declines and a pure ONC network con-
stitutes the optimal technology choice. Other influential parameter assumptions are 
battery capacity and charging power of ONC buses, as they have a major impact 
on the necessary fleet size. Although these parameters changed the share of ONC 
and OPC buses in the optimal fleet composition, improved vehicle specifications 
only achieved small reductions of LCC. Besides these external parameter settings, 
diverging energy consumption assumptions produced technological shifts in the 
optimal fleet composition. Lower energy consumption values resulted in higher 
shares of ONC buses, while higher energy consumption increased the share of 
OPC+supercaps in the bus fleet. A full system operation by OPC, however, turned 
out to be infeasible with the given set of available charging sites.

The results for hydrogen-based alternatives showed that in the base-case scenario, 
FC and FC-REX are not competitive with battery-electric alternatives. When life 
cycle costs of fuel cell buses align to its battery-electric counterparts, network LCC 
improve considerably and a mix of FC and FC-REX surpasses all other technol-
ogy options. A similarly significant effect is reached when vehicle configurations of 
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FC-REX buses are changed to larger batteries and smaller fuel cells, as vehicle LCC 
are directly decreased and additional cost advantages are realized through infrastruc-
ture and energy cost savings. Overall, this indicates that low vehicle prices are a 
major requirement for the technologies’ competitiveness. The results of hydrogen-
related input variations support this view, as neither cheaper hydrogen prices nor 
lower consumption values were sufficient to make hydrogen-based technologies 
competitive in scenarios with standard vehicle prices.

The analysis of altering energy costs showed that the original technology mix 
remains stable within a wide range of electricity prices and also the ranking among 
single technologies does not change. Solutions of hydrogen-based technologies gen-
erally react stronger to increased electricity prices, which can be explained by the 
lower energy efficiency of hydrogen-powered systems.

Overall, our results indicate that the optimal technology mix is a truly individual 
decision, which depends on an interplay of (1) internal operating conditions and (2) 
external market trends, i.e. prices and technical solutions. With the proposed optimi-
zation procedure we pursue a systematic approach to reveal the impact of relevant 
input assumptions and point out critical factors for a technology’s effective perfor-
mance. Together with a detailed, easy-to-handle data interface, the decision-support 
tool can also be transferred to other, medium-sized cities. With approx. 4.000 time-
tabled trips a day, solutions for the bus system in Graz are retrieved within accept-
able computation times. For larger instances, however, running time requirements 
become prohibitively large and advanced decomposition approaches might be con-
sidered for solving the investigated planning problem.

A shortcoming of the proposed optimization model is that the timing of bus pur-
chases is not explicitly considered. The bus fleet transition problem, as investigated 
by Pelletier et al. (2019) or Islam and Lownes (2019), provides clear replacement 
strategies for the transition phase, but usually adopts more aggregated approaches 
with respect to daily operations and resource requirements. Considering lengthy and 
politically sensitive public procurement processes as well as difficulties in timely 
deliveries and price uncertainties, we suggest to develop exact replacement plans 
once the long-term pursued technology choice is known.

The technology options investigated in this paper were selected together with 
experts of the bus operator in consideration of local circumstances. Other clean 
technology concepts, such as trolleybuses, natural gas or bio-fuel buses, might be 
additional options. Since the operational aspects of these technologies coincide to 
a large extent with hydrogen buses (high infrastructure cost but no refueling during 
the day), they could be included in our model with minor adaptations.

As a comprehensive evaluation of different technologies requires a systematic 
comparison on various levels, a further problem is the incorporation of the environ-
mental impact in investment decisions. Though all investigated technology options 
are locally emission-free, their deployment gives rise to further processes down the 
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value chain, which cannot be ignored on a global scale. As environmental effects 
are a multi-criteria concept in itself and compete with monetary arguments, a future 
research direction is to embed multi-objective optimization methods in the optimal 
technology choice.

Appendix A Additional material

See Tables 9, 10.

Table 9   Hydrogen infrastructure concept B - hydrogen storage at one location

1 lower bound of daily filled hydrogen
2 upper bound of daily filled hydrogen

Exp. stage Location LB H21 [kg] UB H22 [kg] Infrastructure 
costs [Mio. € ]

Production 
costs [€/kg]

0 Depot 0 0 – –
1 Depot 1 999 11.41 3.24
2 Depot 1000 1998 20.65 3.24
3 Depot 1999 2997 29.52 3.24
4 Depot 2998 3996 38.40 3.24
5 Depot 3997 4392 44.13 3.24

Table 10   Charging-related parameters used in the base scenario, Run 1 & 3

3 As the considered technologies require different battery types and sizes, which have different weights 
and thereby influence consumption values, an additional adaption is made with regard to vehicle weight. 
Based on the results of a local e-bus study (Holding Graz, AVL List GmbH, internal report, 26.03.2021), 
0.05 kWh/km energy consumption are added to above-mentioned base values for each extra ton of bat-
tery weight compared to the light-weight OPC+supercaps option

Parameters for 12 m/18 m buses Decrease Standard Increase Unit

ONC battery capacities 200/350 350/500 500/650 kWh
ONC charging power 50 100 150 kW
OPC+batteries battery capacities – 240/300 480/600 kWh
OPC+batteries charging power – 300 450 kW
Avg. energy consumption values3 for system configuration 1.71/2.22 1.99/2.58 2.26/2.94 kWh/km
Avg. energy consumption values3 for cost calculations 1.41/1.76 1.64/2.04 1.82/2.37 kWh/km
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Fig. 9   Comparison of LCC and fleet composition of the technology mix for different ONC factor com-
binations. Each charging factor combination is signified by a tuple (battery capacity, charging power), 
which indicates the respective state of battery capacity and charging power. ∼ stands for standard factor 
levels, a + represents an increase in battery capacity or charging power

Fig. 10   Comparison of LCC and fleet composition of ONC networks for different charging factor com-
binations. Each charging factor combination is signified by a tuple (battery capacity, charging power), 
which indicates the respective state of battery capacity and charging power. ∼ stands for standard factor 
levels, a + represents an increase in battery capacity or charging power
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